-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy patheuler-0026.cpp
132 lines (118 loc) · 3.91 KB
/
euler-0026.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// ////////////////////////////////////////////////////////
// # Title
// Reciprocal cycles
//
// # URL
// https://projecteuler.net/problem=26
// http://euler.stephan-brumme.com/26/
//
// # Problem
// A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:
//
// `frac{1}{2} = 0.5`
// `frac{1}{3} = 0.overline{3}`
// `frac{1}{4} = 0.25`
// `frac{1}{5} = 0.2`
// `frac{1}{6} = 0.1\overline{6}`
// `frac{1}{7} = 0.overline{142857}`
// `frac{1}{8} = 0.125`
// `frac{1}{9} = 0.overline{1}`
// `frac{1}{10} = 0.1`
//
// Where `0.1\overline{6}` means `0.166666...`, and has a 1-digit recurring cycle.
// It can be seen that `frac{1}{7}` has a 6-digit recurring cycle.
//
// Find the value of `d < 1000` for which `1/d` contains the longest recurring cycle in its decimal fraction part.
//
// # Solved by
// Stephan Brumme
// February 2017
//
// # Algorithm
// I implemented the same basic division algorithm I learnt in school (3rd grade ?!)
// but of course extended it to operate with fractionals instead of integers, e.g. `1/7 = 0.overline{142857}`
//
// Let's do it the good old-fashioned way:
// 1 / 7 = 0 (and 1 remains, multiply it by 10 and it becomes our next dividend)
// 1*10 / 7 = 1 (and 3 remains, multiply as above)
// 3*10 / 7 = 4 (and 2 remains, you know the game)
// 2*10 / 7 = 2 (and 6 remains)
// 6*10 / 7 = 8 (and 4 remains)
// 4*10 / 7 = 5 (and 5 remains)
// 5*10 / 7 = 7 (and 1 remains)
//
// Now we have the same remainder 1 we had in the first step and the circle begins again.
// Moreover, the digits after the equation sign produce the recurring cycle 142857.
// Their length is 6 because it took six steps until we saw the same remainder again.
//
// More or less the same algorithm can be found in the Wikipedia, too: https://en.wikipedia.org/wiki/Repeating_decimal
//
// Similar to many problems before, the modified Hackerrank problem forced me to precompute the results
// and then just look up those numbers for each test case.
#include <iostream>
#include <vector>
// find length of the recurring cycle in the decimal fraction part of 1/x
unsigned int cycleLength(unsigned int x)
{
// catch invalid fractions
if (x == 0)
return 0;
// [remainder] => [pos]
const unsigned int NotSeenYet = 0;
std::vector<unsigned int> lastPos(x, NotSeenYet);
// start at first digit after the decimal dot
unsigned int position = 1;
// 1/x => initial dividend is 1
unsigned int dividend = 1;
// exit-conditions are inside the loop
while (true)
{
// find remainder
unsigned int remainder = dividend % x;
// if remainder becomes zero then stop immediately
// because the fraction doesn't have a recurring cycle
if (remainder == 0)
return 0;
// same remainder ? => abort
if (lastPos[remainder] != NotSeenYet)
// length of recurring cycle
return position - lastPos[remainder];
// remember position of current remainder
lastPos[remainder] = position;
// next step
position++;
dividend = remainder * 10;
}
}
int main()
{
// Hackerrank's upper limit
const unsigned int MaxDenominator = 10000;
// cache results to speed up running tons of test cases
std::vector<unsigned int> cache = { 0 }; // no cycles for 1/0
unsigned int longestDenominator = 0;
unsigned int longestCycle = 0;
for (unsigned int denominator = 1; denominator <= MaxDenominator; denominator++)
{
// found a longer circle ?
auto length = cycleLength(denominator);
if (longestCycle < length)
{
longestCycle = length;
longestDenominator = denominator;
}
// cache result
cache.push_back(longestDenominator);
}
// plain look up
unsigned int tests;
std::cin >> tests;
while (tests--)
{
unsigned int x;
std::cin >> x;
// find "best" denominator smaller (!) than the input value, therefore minus one
std::cout << cache[x - 1] << std::endl;
}
return 0;
}