-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathparse.py
333 lines (329 loc) · 10.5 KB
/
parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import argparse
import os
from lora_diffusion import safetensors_available
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
"-p",
type=str,
default="./stable-diffusion/stable-diffusion-1-5",
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_vae_name_or_path",
type=str,
default=None,
help="Path to pretrained vae or vae identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--class_data_dir",
type=str,
default="data/class-person",
required=False,
help="A folder containing the training data of class images.",
)
parser.add_argument(
"--src_dir",
type=str,
default="data/src",
required=False,
help="A folder containing the source portrait.",
)
parser.add_argument(
"--targ_dir",
type=str,
default="data/targ",
required=False,
help="A folder containing the targ portrait.",
)
parser.add_argument(
"--instance_prompt",
type=str,
default="a photo of sks person",
help="The prompt with identifier specifying the instance",
)
parser.add_argument(
"--class_prompt",
type=str,
default="a photo of person",
help="The prompt to specify images in the same class as provided instance images.",
)
parser.add_argument(
"--with_prior_preservation",
default=True,
help="Flag to add prior preservation loss.",
)
parser.add_argument(
"--prior_loss_weight",
type=float,
default=1.0,
help="The weight of prior preservation loss.",
)
parser.add_argument(
"--num_class_images",
type=int,
default=100,
help=(
"Minimal class images for prior preservation loss. If not have enough images, additional images will be"
" sampled with class_prompt."
),
)
parser.add_argument(
"--instance_data_dir",
type=str,
default="output/lora",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--output_dir",
type=str,
default="output/lora",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--output_format",
type=str,
choices=["pt", "safe", "both"],
default="both",
help="The output format of the model predicitions and checkpoints.",
)
parser.add_argument(
"--seed", type=int, default=None, help="A seed for reproducible training."
)
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop",
default=True,
help="Whether to center crop images before resizing to resolution",
)
parser.add_argument(
"--color_jitter",
action="store_true",
help="Whether to apply color jitter to images",
)
parser.add_argument(
"--train_text_encoder",
default=True,
help="Whether to train the text encoder",
)
parser.add_argument(
"--train_batch_size",
type=int,
default=1,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--sample_batch_size",
type=int,
default=4,
help="Batch size (per device) for sampling images.",
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=1000,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--save_steps",
type=int,
default=1000,
help="Save checkpoint every X updates steps.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--lora_rank",
type=int,
default=4,
help="Rank of LoRA approximation.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--learning_rate_text",
type=float,
default=5e-5,
help="Initial learning rate for text encoder (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps",
type=int,
default=500,
help="Number of steps for the warmup in the lr scheduler.",
)
parser.add_argument(
"--use_8bit_adam",
action="store_true",
help="Whether or not to use 8-bit Adam from bitsandbytes.",
)
parser.add_argument(
"--adam_beta1",
type=float,
default=0.9,
help="The beta1 parameter for the Adam optimizer.",
)
parser.add_argument(
"--adam_beta2",
type=float,
default=0.999,
help="The beta2 parameter for the Adam optimizer.",
)
parser.add_argument(
"--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use."
)
parser.add_argument(
"--adam_epsilon",
type=float,
default=1e-08,
help="Epsilon value for the Adam optimizer",
)
parser.add_argument(
"--max_grad_norm", default=1.0, type=float, help="Max gradient norm."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the model to the Hub.",
)
parser.add_argument(
"--hub_token",
type=str,
default=None,
help="The token to use to push to the Model Hub.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--local_rank",
type=int,
default=-1,
help="For distributed training: local_rank",
)
parser.add_argument(
"--resume_unet",
type=str,
default=None,
help=("File path for unet lora to resume training."),
)
parser.add_argument(
"--resume_text_encoder",
type=str,
default=None,
help=("File path for text encoder lora to resume training."),
)
parser.add_argument(
"--resize",
type=bool,
default=True,
required=False,
help="Should images be resized to --resolution before training?",
)
parser.add_argument(
"--use_xformers", action="store_true", help="Whether or not to use xformers"
)
# Augmentations
parser.add_argument("--aug_num", type=int, help="The number of augmentation", default=8)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.with_prior_preservation:
if args.class_data_dir is None:
raise ValueError("You must specify a data directory for class images.")
if args.class_prompt is None:
raise ValueError("You must specify prompt for class images.")
else:
if args.class_data_dir is not None:
logger.warning(
"You need not use --class_data_dir without --with_prior_preservation."
)
if args.class_prompt is not None:
logger.warning(
"You need not use --class_prompt without --with_prior_preservation."
)
if not safetensors_available:
if args.output_format == "both":
print(
"Safetensors is not available - changing output format to just output PyTorch files"
)
args.output_format = "pt"
elif args.output_format == "safe":
raise ValueError(
"Safetensors is not available - either install it, or change output_format."
)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
print(f"Created output directory {args.output_dir}")
return args