-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinterface.py
442 lines (334 loc) · 14.5 KB
/
interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# Copyright 2023 Prism Developers. All Rights Reserved.
#
# Licensed under the GNU General Public License v3.0;
# you may not use this file except in compliance with the License.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
# either express or implied.
#
# See the License file for the specific language governing
# permissions and limitations.
#
# Available at https://github.com/sokolov-group/prism
#
# Authors: Alexander Yu. Sokolov <[email protected]>
# Carlos E. V. de Moura <[email protected]>
#
import os
import tempfile
import numpy as np
import prism.lib.logger as logger
class PYSCF:
def __init__(self, mf, mc = None, opt_einsum = False):
if mc is None:
self.stdout = mf.stdout
self.verbose = mf.verbose
else:
self.stdout = mf.stdout
self.verbose = mc.verbose
log = logger.Logger(self.stdout, self.verbose)
log.prism_header()
log.info("Importing Pyscf objects...")
from pyscf import lib
self.type = "pyscf"
# General info
self.mol = mf.mol
self.nelec = mf.mol.nelectron
self.enuc = mf.mol.energy_nuc()
self.e_scf = mf.e_tot
self.mf = mf
self.log = log
if mc is None:
self.reference = "scf"
self.max_memory = mf.max_memory
self.mo = mf.mo_coeff.copy()
self.nmo = self.mo.shape[1]
self.mo_energy = mf.mo_energy.copy()
self.symmetry = mf.mol.symmetry
if getattr(mf, 'with_df', None):
self.reference_df = mc.with_df
else:
self.reference_df = None
if self.symmetry:
from pyscf import symm
self.group_repr_symm = [symm.irrep_id2name(mf.mol.groupname, x) for x in mf._scf.mo_coeff.orbsym]
else:
self.group_repr_symm = None
else:
self.reference = "casscf"
self.max_memory = mc.max_memory
self.mo = mc.mo_coeff.copy()
self.mo_hf = mf.mo_coeff.copy()
self.ovlp = mf.get_ovlp(mf.mol)
self.nmo = self.mo.shape[1]
self.ncore = mc.ncore
self.ncas = mc.ncas
self.nextern = self.nmo - self.ncore - self.ncas
self.nelecas = mc.nelecas
self.e_casscf = mc.e_tot
self.e_cas = mc.e_cas
self.davidson_only = mc.fcisolver.davidson_only
self.pspace_size = mc.fcisolver.pspace_size
self.enforce_degeneracy = True
if getattr(mc, 'with_df', None):
self.reference_df = mc.with_df
else:
self.reference_df = None
# Check spin symmetry of the reference wavefunction and, if necessary, generate complete reference spin manifold
self.wfn_casscf_spin_square = self.compute_spin_square(mc.ci, mc.ncas, mc.nelecas)
self.wfn_casscf_spin = ((-1) + (np.sqrt(1 + 4 * self.wfn_casscf_spin_square))) / 2
self.wfn_casscf_spin_mult = int(round((2 * self.wfn_casscf_spin) + 1))
ref_ci = None
ref_nelecas = None
mo = None
ci = None
mo_energy = None
if self.wfn_casscf_spin_square > 0.01:
# Compute all CASCI states for the reference spin manifold
ref_ci, ref_nelecas = self.compute_ref_spin_manifold(mc.ci, mc.ncas, mc.nelecas)
# Canonicalize the orbitals
# Compute state-averaged 1-RDM with respect to the spin manifold
rdm1 = np.zeros((mc.ncas, mc.ncas))
for p in range(len(ref_ci)):
rdm1 += mc.fcisolver.make_rdm1(ref_ci[p], mc.ncas, ref_nelecas[p])
rdm1 /= len(ref_ci)
mo, ci, mo_energy = mc.canonicalize(casdm1 = rdm1, ci = ref_ci, cas_natorb = False)
else:
# Make sure that the orbitals are canonicalized
mo, ci, mo_energy = mc.canonicalize(mo_coeff=mc.mo_coeff, ci=ref_ci)
ref_nelecas = mc.nelecas
self.mo = mo.copy()
self.mo_energy = mo_energy.copy()
self.wfn_casscf = ci
self.nelecas = ref_nelecas
# TODO: Check if this is done correctly when canonicalization changes the order of orbitals
self.symmetry = mc.mol.symmetry
if self.symmetry:
from pyscf import symm
self.group_repr_symm = [symm.irrep_id2name(mc.mol.groupname, x) for x in mc.mo_coeff.orbsym]
else:
self.group_repr_symm = None
from pyscf import ao2mo
self.transform_2e_chem_incore = ao2mo.general
self.transform_2e_pair_chem_incore = ao2mo._ao2mo.nr_e2
self.davidson = lib.linalg_helper.davidson1
# If set to a list, can be used to select certain CASCI states during MR-ADC computations
self.select_casci = None
# Current Memory
self.current_memory = lib.current_memory
# HDF5 Files
if os.environ.get('PYSCF_TMPDIR'):
self.temp_dir = os.environ.get('PYSCF_TMPDIR', tempfile.gettempdir())
else:
self.temp_dir = os.environ.get('TMPDIR', tempfile.gettempdir())
# Integrals
self.h1e_ao = mf.get_hcore()
if isinstance(mf._eri, np.ndarray):
self.v2e_ao = mf._eri
else:
self.v2e_ao = mf.mol
self.with_df = None
self.naux = None
# Dipole moments
self.dip_mom_ao = mf.mol.intor_symmetric("int1e_r", comp = 3)
# Whether to use opt_einsum
if opt_einsum:
from opt_einsum import contract
self.einsum = contract
self.einsum_type = "greedy"
else:
self.einsum = np.einsum
self.einsum_type = "greedy"
@property
def with_df(self):
return self._with_df
@with_df.setter
def with_df(self, obj):
self._with_df = obj
if obj:
self.get_naux = obj.get_naoaux
def compute_spin_square(self, wfn, ncas, nelecas):
from pyscf import fci
spin_sq = fci.spin_op.spin_square(wfn, ncas, nelecas)[0]
return spin_sq
def compute_ref_spin_manifold(self, wfn, ncas, nelecas):
spin_sq = self.wfn_casscf_spin_square
s_value = self.wfn_casscf_spin
multiplicity = self.wfn_casscf_spin_mult
msz_wfn = self.apply_S_z(wfn, ncas, nelecas)
msz_value = np.dot(wfn.ravel(), msz_wfn.ravel())
ms = []
for I in range(multiplicity):
if not np.isclose(s_value-I, msz_value, rtol=1e-05):
ms.append(s_value-I)
plus_op_list = [x for x in ms if x > msz_value]
minus_op_list = [x for x in ms if x < msz_value]
#Initialize spin up and spin down projection generators:
spin_multiplet = []
spin_multiplet_ne = []
spin_multiplet.append(wfn)
spin_multiplet_ne.append(nelecas)
spin_wf_plus = wfn.copy()
spin_wf_minus = wfn.copy()
spin_nelec_plus = nelecas
spin_nelec_minus = nelecas
for I in range(len(plus_op_list)):
# Apply spin operators for finding ms values
sz_plus = self.apply_S_z(spin_wf_plus, ncas, spin_nelec_plus)
msz_plus = np.dot(spin_wf_plus.ravel(), sz_plus.ravel())
# Apply Raising operator:
spin_wf_plus, spin_nelec_plus = self.apply_S_plus(spin_wf_plus, ncas, spin_nelec_plus)
# Normalize the wfn
spin_wf_plus = spin_wf_plus/(np.sqrt(spin_sq - msz_plus*(msz_plus + 1)))
# Add spin states to list
spin_multiplet.append(spin_wf_plus)
spin_multiplet_ne.append(spin_nelec_plus)
for I in range(len(minus_op_list)):
# Apply spin operators for finding ms values
sz_minus = self.apply_S_z(spin_wf_minus, ncas, spin_nelec_minus)
msz_minus = np.dot(spin_wf_minus.ravel(), sz_minus.ravel())
# Apply lowering operator:
spin_wf_minus, spin_nelec_minus = self.apply_S_minus(spin_wf_minus, ncas, spin_nelec_minus)
# Normalize the wfn
spin_wf_minus = spin_wf_minus/(np.sqrt(spin_sq - msz_minus*(msz_minus - 1)))
# Add spin states to list
spin_multiplet.append(spin_wf_minus)
spin_multiplet_ne.append(spin_nelec_minus)
assert(len(spin_multiplet) == multiplicity), 'ncasci should be equal to the number of casci states requested'
return spin_multiplet, spin_multiplet_ne
# Apply S+ (spin raising) operator
def apply_S_plus(self, psi, ncas, nelecas):
Sp_psi = []
Sp_ne = None
for y in range(ncas):
a_psi, a_psi_ne = self.act_des_b(psi, ncas, nelecas, y)
ca_psi, ca_psi_ne = self.act_cre_a(a_psi, ncas, a_psi_ne, y)
Sp_psi.append(ca_psi)
Sp_ne = ca_psi_ne
Sp_psi = sum(Sp_psi)
# # Fix the phase for the CI coefficients
# i, j = np.unravel_index(np.absolute(Sp_psi).argmax(), Sp_psi.shape)
# if Sp_psi[i, j] < 0.0:
# Sp_psi *= -1.0
return Sp_psi, Sp_ne
# Apply S- (spin lowering) operator
def apply_S_minus(self, psi, ncas, nelecas):
Sp_psi = []
Sp_ne = None
for y in range(ncas):
a_psi, a_psi_ne = self.act_des_a(psi, ncas, nelecas, y)
ca_psi, ca_psi_ne = self.act_cre_b(a_psi, ncas, a_psi_ne, y)
Sp_psi.append(ca_psi)
Sp_ne = ca_psi_ne
Sp_psi = sum(Sp_psi)
# # Fix the phase for the CI coefficients
# i, j = np.unravel_index(np.absolute(Sp_psi).argmax(), Sp_psi.shape)
# if Sp_psi[i, j] < 0.0:
# Sp_psi *= -1.0
return Sp_psi, Sp_ne
# Apply Sz (z-projection of S) operator:
def apply_S_z(self, psi, ncas, nelecas):
Sp_psi = []
for y in range(ncas):
a_psi, a_psi_ne = self.act_des_a(psi, ncas, nelecas, y)
a_psi2, a_psi_ne2 = self.act_cre_a(a_psi, ncas, a_psi_ne, y)
b_psi, b_psi_ne = self.act_des_b(psi, ncas, nelecas, y)
b_psi2, b_psi_ne2 = self.act_cre_b(b_psi, ncas, b_psi_ne, y)
if a_psi2 is None:
Sp_psi.append(0.5*(-b_psi2))
elif b_psi2 is None:
Sp_psi.append(0.5*a_psi2)
else:
Sp_psi.append(0.5*(a_psi2 - b_psi2))
Sp_psi = sum(Sp_psi)
ms = np.dot(psi.ravel(), Sp_psi.ravel())
return Sp_psi
# Act annihilation operator (alpha spin)
def act_cre_a(self, wfn, ncas, nelec, orb):
from pyscf import fci
self.cre_a = fci.addons.cre_a
if (wfn is not None) and (ncas - nelec[0] > 0):
c_wfn = self.cre_a(wfn, ncas, nelec, orb)
c_wfn_ne = (nelec[0] + 1, nelec[1])
else:
c_wfn = None
c_wfn_ne = None
return c_wfn, c_wfn_ne
# Act annihilation operator (beta spin)
def act_cre_b(self, wfn, ncas, nelec, orb):
from pyscf import fci
self.cre_b = fci.addons.cre_b
if (wfn is not None) and (ncas - nelec[1] > 0):
c_wfn = self.cre_b(wfn, ncas, nelec, orb)
c_wfn_ne = (nelec[0], nelec[1] + 1)
else:
c_wfn = None
c_wfn_ne = None
return c_wfn, c_wfn_ne
# Act annihilation operator (alpha spin)
def act_des_a(self, wfn, ncas, nelec, orb):
from pyscf import fci
self.des_a = fci.addons.des_a
if (wfn is not None) and (nelec[0] > 0):
a_wfn = self.des_a(wfn, ncas, nelec, orb)
a_wfn_ne = (nelec[0] - 1, nelec[1])
else:
a_wfn = None
a_wfn_ne = None
return a_wfn, a_wfn_ne
# Act annihilation operator (beta spin)
def act_des_b(self, wfn, ncas, nelec, orb):
from pyscf import fci
self.des_b = fci.addons.des_b
if (wfn is not None) and (nelec[1] > 0):
a_wfn = self.des_b(wfn, ncas, nelec, orb)
a_wfn_ne = (nelec[0], nelec[1] - 1)
else:
a_wfn = None
a_wfn_ne = None
return a_wfn, a_wfn_ne
def density_fit(self, auxbasis=None, with_df = None):
if with_df is None:
self.log.info("Importing Pyscf density-fitting objects...")
from pyscf import df
self.with_df = df.DF(self.mol, auxbasis)
self.get_naux = self.with_df.get_naoaux
else:
self.with_df = with_df
return self
def compute_rdm123(self, bra, ket, nelecas):
from pyscf import fci
rdm1, rdm2, rdm3 = fci.rdm.make_dm123('FCI3pdm_kern_sf', bra, ket, self.ncas, nelecas)
rdm1, rdm2, rdm3 = fci.rdm.reorder_dm123(rdm1, rdm2, rdm3)
# rdm2[p,q,r,s] = \langle p^\dagger q^\dagger s r\rangle
rdm2 = np.ascontiguousarray(rdm2.transpose(0, 2, 1, 3))
# rdm3[p,q,r,s,t,u] = \langle p^\dagger q^\dagger r^\dagger u t s\rangle
rdm3 = np.ascontiguousarray(rdm3.transpose(0, 2, 4, 1, 3, 5))
return rdm1, rdm2, rdm3
def compute_rdm1234(self, bra, ket, nelecas):
from pyscf import fci
rdm1, rdm2, rdm3, rdm4 = 4 * (None,)
if isinstance(nelecas, (list)):
rdm1, rdm2, rdm3, rdm4 = fci.rdm.make_dm1234('FCI4pdm_kern_sf', bra[0], ket[0], self.ncas, nelecas[0])
for p in range(1, len(nelecas)):
rdm1_p, rdm2_p, rdm3_p, rdm4_p = fci.rdm.make_dm1234('FCI4pdm_kern_sf', bra[p], ket[p], self.ncas, nelecas[p])
rdm1 += rdm1_p
rdm2 += rdm2_p
rdm3 += rdm3_p
rdm4 += rdm4_p
rdm1 /= len(nelecas)
rdm2 /= len(nelecas)
rdm3 /= len(nelecas)
rdm4 /= len(nelecas)
else:
rdm1, rdm2, rdm3, rdm4 = fci.rdm.make_dm1234('FCI4pdm_kern_sf', bra, ket, self.ncas, nelecas)
rdm1, rdm2, rdm3, rdm4 = fci.rdm.reorder_dm1234(rdm1, rdm2, rdm3, rdm4)
# rdm2[p,q,r,s] = \langle p^\dagger q^\dagger s r\rangle
rdm2 = np.ascontiguousarray(rdm2.transpose(0, 2, 1, 3))
# rdm3[p,q,r,s,t,u] = \langle p^\dagger q^\dagger r^\dagger u t s\rangle
rdm3 = np.ascontiguousarray(rdm3.transpose(0, 2, 4, 1, 3, 5))
# rdm4[p,q,r,s,t,u,v,w] = \langle p^\dagger q^\dagger r^\dagger w v u t\rangle
rdm4 = np.ascontiguousarray(rdm4.transpose(0, 2, 4, 6, 1, 3, 5, 7))
return rdm1, rdm2, rdm3, rdm4