-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBasicFilters_modified.h
1133 lines (954 loc) · 28.1 KB
/
BasicFilters_modified.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* BasicFilters.h - simple but powerful filter-class with most used filters
*
* original file by ???
* modified and enhanced by Tobias Doerffel
*
* Lowpass_SV code originally from Nekobee, Copyright (C) 2004 Sean Bolton and others
* adapted & modified for use in LMMS
*
* Copyright (c) 2004-2009 Tobias Doerffel <tobydox/at/users.sourceforge.net>
*
* This file is part of LMMS - http://lmms.io
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program (see COPYING); if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301 USA.
*
*/
#ifndef BASIC_FILTERS_H
#define BASIC_FILTERS_H
#ifndef __USE_XOPEN
#define __USE_XOPEN
#endif
#include <math.h>
#include "lmms_basics.h"
#ifndef STANDALONE
#include "Mixer.h"
#include "templates.h"
#include "lmms_constants.h"
#include "interpolation.h"
#include "MemoryManager.h"
#endif
#ifdef MOOG_SSE
#include <emmintrin.h>
#include <mmintrin.h>
#endif
template<ch_cnt_t CHANNELS> class BasicFilters;
template<ch_cnt_t CHANNELS>
class LinkwitzRiley
{
MM_OPERATORS
public:
LinkwitzRiley( float sampleRate )
{
m_sampleRate = sampleRate;
clearHistory();
}
virtual ~LinkwitzRiley() {}
inline void clearHistory()
{
for( int i = 0; i < CHANNELS; ++i )
{
m_z1[i] = m_z2[i] = m_z3[i] = m_z4[i] = 0.0f;
}
}
inline void setSampleRate( float sampleRate )
{
m_sampleRate = sampleRate;
}
inline void setCoeffs( float freq )
{
// wc
const double wc = D_2PI * freq;
const double wc2 = wc * wc;
const double wc3 = wc2 * wc;
m_wc4 = wc2 * wc2;
// k
const double k = wc / tan( D_PI * freq / m_sampleRate );
const double k2 = k * k;
const double k3 = k2 * k;
m_k4 = k2 * k2;
// a
static const double sqrt2 = sqrt( 2.0 );
const double sq_tmp1 = sqrt2 * wc3 * k;
const double sq_tmp2 = sqrt2 * wc * k3;
m_a = 1.0 / ( 4.0 * wc2 * k2 + 2.0 * sq_tmp1 + m_k4 + 2.0 * sq_tmp2 + m_wc4 );
// b
m_b1 = ( 4.0 * ( m_wc4 + sq_tmp1 - m_k4 - sq_tmp2 ) ) * m_a;
m_b2 = ( 6.0 * m_wc4 - 8.0 * wc2 * k2 + 6.0 * m_k4 ) * m_a;
m_b3 = ( 4.0 * ( m_wc4 - sq_tmp1 + sq_tmp2 - m_k4 ) ) * m_a;
m_b4 = ( m_k4 - 2.0 * sq_tmp1 + m_wc4 - 2.0 * sq_tmp2 + 4.0 * wc2 * k2 ) * m_a;
}
inline void setLowpass( float freq )
{
setCoeffs( freq );
m_a0 = m_wc4 * m_a;
m_a1 = 4.0 * m_a0;
m_a2 = 6.0 * m_a0;
}
inline void setHighpass( float freq )
{
setCoeffs( freq );
m_a0 = m_k4 * m_a;
m_a1 = -4.0 * m_a0;
m_a2 = 6.0 * m_a0;
}
inline float update( float in, ch_cnt_t ch )
{
const double x = in - ( m_z1[ch] * m_b1 ) - ( m_z2[ch] * m_b2 ) -
( m_z3[ch] * m_b3 ) - ( m_z4[ch] * m_b4 );
const double y = ( m_a0 * x ) + ( m_z1[ch] * m_a1 ) + ( m_z2[ch] * m_a2 ) +
( m_z3[ch] * m_a1 ) + ( m_z4[ch] * m_a0 );
m_z4[ch] = m_z3[ch];
m_z3[ch] = m_z2[ch];
m_z2[ch] = m_z1[ch];
m_z1[ch] = x;
return y;
}
private:
float m_sampleRate;
double m_wc4;
double m_k4;
double m_a, m_a0, m_a1, m_a2;
double m_b1, m_b2, m_b3, m_b4;
typedef double frame[CHANNELS];
frame m_z1, m_z2, m_z3, m_z4;
};
typedef LinkwitzRiley<2> StereoLinkwitzRiley;
template<ch_cnt_t CHANNELS>
class BiQuad
{
MM_OPERATORS
public:
BiQuad()
{
clearHistory();
}
virtual ~BiQuad() {}
inline void setCoeffs( float a1, float a2, float b0, float b1, float b2 )
{
m_a1 = a1;
m_a2 = a2;
m_b0 = b0;
m_b1 = b1;
m_b2 = b2;
}
inline void clearHistory()
{
for( int i = 0; i < CHANNELS; ++i )
{
m_z1[i] = 0.0f;
m_z2[i] = 0.0f;
}
}
inline void update_n( sample_t *_in0 ) {
for(ch_cnt_t ch=0; ch < CHANNELS; ++ch) {
// biquad filter in transposed form
const float out = m_z1[ch] + m_b0 * _in0[ch];
m_z1[ch] = m_b1 * _in0[ch] + m_z2[ch] - m_a1 * out;
m_z2[ch] = m_b2 * _in0[ch] - m_a2 * out;
_in0[ch] = out;
}
}
inline float update( float in, ch_cnt_t ch )
{
// biquad filter in transposed form
const float out = m_z1[ch] + m_b0 * in;
m_z1[ch] = m_b1 * in + m_z2[ch] - m_a1 * out;
m_z2[ch] = m_b2 * in - m_a2 * out;
return out;
}
private:
float m_a1, m_a2, m_b0, m_b1, m_b2;
float m_z1 [CHANNELS], m_z2 [CHANNELS];
friend class BasicFilters<CHANNELS>; // needed for subfilter stuff in BasicFilters
};
typedef BiQuad<2> StereoBiQuad;
template<ch_cnt_t CHANNELS>
class OnePole
{
MM_OPERATORS
public:
OnePole()
{
m_a0 = 1.0;
m_b1 = 0.0;
for( int i = 0; i < CHANNELS; ++i )
{
m_z1[i] = 0.0;
}
}
virtual ~OnePole() {}
inline void setCoeffs( float a0, float b1 )
{
m_a0 = a0;
m_b1 = b1;
}
inline float update( float s, ch_cnt_t ch )
{
if( qAbs( s ) < 1.0e-10f && qAbs( m_z1[ch] ) < 1.0e-10f ) return 0.0f;
return m_z1[ch] = s * m_a0 + m_z1[ch] * m_b1;
}
private:
float m_a0, m_b1;
float m_z1 [CHANNELS];
};
typedef OnePole<2> StereoOnePole;
template<ch_cnt_t CHANNELS>
class BasicFilters
{
MM_OPERATORS
public:
enum FilterTypes
{
LowPass,
HiPass,
BandPass_CSG,
BandPass_CZPG,
Notch,
AllPass,
Moog,
DoubleLowPass,
Lowpass_RC12,
Bandpass_RC12,
Highpass_RC12,
Lowpass_RC24,
Bandpass_RC24,
Highpass_RC24,
Formantfilter,
DoubleMoog,
Lowpass_SV,
Bandpass_SV,
Highpass_SV,
Notch_SV,
FastFormant,
Tripole,
NumFilters
};
static inline float minFreq()
{
return( 5.0f );
}
static inline float minQ()
{
return( 0.01f );
}
inline void setFilterType( const int _idx )
{
m_doubleFilter = _idx == DoubleLowPass || _idx == DoubleMoog;
if( !m_doubleFilter )
{
m_type = static_cast<FilterTypes>( _idx );
return;
}
// Double lowpass mode, backwards-compat for the goofy
// Add-NumFilters to signify doubleFilter stuff
m_type = _idx == DoubleLowPass
? LowPass
: Moog;
if( m_subFilter == NULL )
{
void *ptr;
int foo = posix_memalign(&ptr, 16, sizeof(BasicFilters<CHANNELS>));
m_subFilter = new(ptr) BasicFilters<CHANNELS>(
static_cast<sample_rate_t>(
m_sampleRate ) );
/* m_subFilter = new BasicFilters<CHANNELS>(
static_cast<sample_rate_t>(
m_sampleRate ) ); */
}
m_subFilter->m_type = m_type;
}
inline BasicFilters( const sample_rate_t _sample_rate ) :
m_doubleFilter( false ),
m_sampleRate( (float) _sample_rate ),
m_sampleRatio( 1.0f / m_sampleRate ),
m_subFilter( NULL )
{
clearHistory();
}
inline ~BasicFilters()
{
delete m_subFilter;
}
inline void clearHistory()
{
// reset in/out history for biquads
m_biQuad.clearHistory();
// reset in/out history
for(int i=0; i<6; i++)
for( ch_cnt_t _chnl = 0; _chnl < CHANNELS; ++_chnl )
m_vfbp[i][_chnl] = m_vfhp[i][_chnl] = m_vflast[i][_chnl] = 0.0f;
#ifdef MOOG_SSE
y1_v = y2_v = y3_v = y4_v =
oldx_v = oldy1_v = oldy2_v = oldy3_v =
_mm_set_ps1(0.0);
#endif
for( ch_cnt_t _chnl = 0; _chnl < CHANNELS; ++_chnl )
{
// reset in/out history for moog-filter
m_y1[_chnl] = m_y2[_chnl] = m_y3[_chnl] = m_y4[_chnl] =
m_oldx[_chnl] = m_oldy1[_chnl] =
m_oldy2[_chnl] = m_oldy3[_chnl] = 0.0f;
// tripole
m_last[_chnl] = 0.0f;
// reset in/out history for RC-filters
m_rclp0[_chnl] = m_rcbp0[_chnl] = m_rchp0[_chnl] = m_rclast0[_chnl] = 0.0f;
m_rclp1[_chnl] = m_rcbp1[_chnl] = m_rchp1[_chnl] = m_rclast1[_chnl] = 0.0f;
// reset in/out history for SV-filters
m_delay1[_chnl] = 0.0f;
m_delay2[_chnl] = 0.0f;
m_delay3[_chnl] = 0.0f;
m_delay4[_chnl] = 0.0f;
}
}
// Filter all channels in place in one call
inline void update_n( sample_t *_in0 ) {
sample_t out;
sample_t x[CHANNELS];
switch( m_type )
{
case Moog:
{
#ifdef MOOG_SSE
if(CHANNELS <= 4) {
__m128 x_v, in0_v;
const __m128 plus10 = _mm_set_ps1(10.0);
const __m128 minus10 = _mm_set_ps1(-10.0);
float res[4];
// TODO: probably not the most elegant solution...
switch( CHANNELS )
{
case 1:
in0_v = _mm_set_ps(0.0, 0.0, 0.0, _in0[0]);
case 2:
in0_v = _mm_set_ps(0.0, 0.0, _in0[1], _in0[0]);
break;
case 3:
in0_v = _mm_set_ps(0.0, _in0[2], _in0[1], _in0[0]);
break;
case 4:
in0_v = _mm_set_ps(_in0[3], _in0[2], _in0[1], _in0[0]);
break;
}
x_v = _mm_sub_ps(in0_v, // in0 -
_mm_mul_ps(r_v, y4_v) ); // m_r * m_y4
// m_y1 = ( x + m_oldx ) * m_p - m_k * m_y1
y1_v = _mm_sub_ps(
_mm_mul_ps(_mm_add_ps( x_v, oldx_v), p_v ), // ( x + m_oldx ) * m_p
_mm_mul_ps(k_v, y1_v) // m_k * m_y1
);
y1_v = _mm_max_ps( minus10, _mm_min_ps(plus10,y1_v) ); // qBound
y2_v = _mm_sub_ps(
_mm_mul_ps(_mm_add_ps( y1_v, oldy1_v), p_v ), // ( m_y1 + m_oldy1 ) * m_p
_mm_mul_ps(k_v, y2_v) // m_k * m_y2
);
y2_v = _mm_max_ps(minus10, _mm_min_ps(plus10,y2_v) );
y3_v = _mm_sub_ps(
_mm_mul_ps(_mm_add_ps( y2_v, oldy2_v), p_v ), // ( m_y2 + m_oldy2 ) * m_p
_mm_mul_ps(k_v, y3_v) // m_k * m_y3
);
y3_v = _mm_max_ps(minus10, _mm_min_ps(plus10,y3_v) );
y4_v = _mm_sub_ps(
_mm_mul_ps(_mm_add_ps( y3_v, oldy3_v), p_v ), // ( m_y3 + m_oldy3 ) * m_p
_mm_mul_ps(k_v, y4_v) // m_k * m_y4
);
y4_v = _mm_max_ps(minus10, _mm_min_ps(plus10,y4_v) );
oldx_v = x_v;
oldy1_v = y1_v;
oldy2_v = y2_v;
oldy3_v = y3_v;
x_v = _mm_set_ps1( 1.0f/6.0f);
in0_v = _mm_sub_ps(y4_v,
_mm_mul_ps(
_mm_mul_ps(y4_v, y4_v),
_mm_mul_ps(y4_v, x_v) )
);
_mm_storeu_ps (res, in0_v);
for(int i=0 ; i<CHANNELS; ++i) {
_in0[i] = res[i];
}
} else {
#else
for(ch_cnt_t _chnl=0; _chnl< CHANNELS; _chnl++) {
x[_chnl] = _in0[_chnl] - m_r*m_y4[_chnl];
}
for(ch_cnt_t _chnl=0; _chnl< CHANNELS; _chnl++) {
// four cascaded onepole filters
// (bilinear transform)
m_y1[_chnl] = qBound( -10.0f,
( x[_chnl] + m_oldx[_chnl] ) * m_p
- m_k * m_y1[_chnl],
10.0f );
m_y2[_chnl] = qBound( -10.0f,
( m_y1[_chnl] + m_oldy1[_chnl] ) * m_p
- m_k * m_y2[_chnl],
10.0f );
m_y3[_chnl] = qBound( -10.0f,
( m_y2[_chnl] + m_oldy2[_chnl] ) * m_p
- m_k * m_y3[_chnl],
10.0f );
m_y4[_chnl] = qBound( -10.0f,
( m_y3[_chnl] + m_oldy3[_chnl] ) * m_p
- m_k * m_y4[_chnl],
10.0f );
}
for(ch_cnt_t _chnl=0; _chnl< CHANNELS; _chnl++) {
m_oldx[_chnl] = x[_chnl];
m_oldy1[_chnl] = m_y1[_chnl];
m_oldy2[_chnl] = m_y2[_chnl];
m_oldy3[_chnl] = m_y3[_chnl];
out = m_y4[_chnl] - m_y4[_chnl] * m_y4[_chnl] *
m_y4[_chnl] * ( 1.0f / 6.0f );
_in0[_chnl]=out;
}
#endif
#ifdef MOOG_SSE
}
#endif
if( m_doubleFilter )
{
m_subFilter->update_n( _in0 );
}
break;
}
case Tripole:
{
// 3x onepole filters with 4x oversampling and interpolation of oversampled signal:
// input signal is linear-interpolated after oversampling, output signal is averaged from oversampled outputs
sample_t _out[CHANNELS];
for(ch_cnt_t _chnl=0; _chnl< CHANNELS; _chnl++) {
_out[_chnl] = 0.0f;
}
float ip = 0.0f;
for( int i = 0; i < 4; ++i )
{
ip += 0.25f;
for(ch_cnt_t _chnl=0; _chnl< CHANNELS; _chnl++) {
sample_t x = linearInterpolate( m_last[_chnl], _in0[_chnl], ip ) - m_r * m_y3[_chnl];
m_y1[_chnl] = qBound( -10.0f,
( x + m_oldx[_chnl] ) * m_p
- m_k * m_y1[_chnl],
10.0f );
m_y2[_chnl] = qBound( -10.0f,
( m_y1[_chnl] + m_oldy1[_chnl] ) * m_p
- m_k * m_y2[_chnl],
10.0f );
m_y3[_chnl] = qBound( -10.0f,
( m_y2[_chnl] + m_oldy2[_chnl] ) * m_p
- m_k * m_y3[_chnl],
10.0f );
m_oldx[_chnl] = x;
m_oldy1[_chnl] = m_y1[_chnl];
m_oldy2[_chnl] = m_y2[_chnl];
_out[_chnl] += ( m_y3[_chnl] - m_y3[_chnl] * m_y3[_chnl] * m_y3[_chnl] * ( 1.0f / 6.0f ) );
}
}
for(ch_cnt_t _chnl=0; _chnl< CHANNELS; _chnl++) {
m_last[_chnl] = _in0[_chnl];
_in0[_chnl] = _out[_chnl]*.25;
}
break;
}
case Lowpass_SV:
case Bandpass_SV:
case Highpass_SV:
case Notch_SV:
case Lowpass_RC12:
case Highpass_RC12:
case Bandpass_RC12:
case Lowpass_RC24:
case Highpass_RC24:
case Bandpass_RC24:
case Formantfilter:
case FastFormant:
for(ch_cnt_t _chnl=0; _chnl< CHANNELS; _chnl++) {
_in0[_chnl] = update(_in0[_chnl], _chnl);
}
break;
default:
m_biQuad.update_n( _in0 );
if( m_doubleFilter )
{
m_subFilter->update_n( _in0 );
}
break;
}
}
inline sample_t update( sample_t _in0, ch_cnt_t _chnl )
{
sample_t out;
switch( m_type )
{
// 3x onepole filters with 4x oversampling and interpolation of oversampled signal:
// input signal is linear-interpolated after oversampling, output signal is averaged from oversampled outputs
case Tripole:
{
out = 0.0f;
float ip = 0.0f;
for( int i = 0; i < 4; ++i )
{
ip += 0.25f;
sample_t x = linearInterpolate( m_last[_chnl], _in0, ip ) - m_r * m_y3[_chnl];
m_y1[_chnl] = qBound( -10.0f,
( x + m_oldx[_chnl] ) * m_p
- m_k * m_y1[_chnl],
10.0f );
m_y2[_chnl] = qBound( -10.0f,
( m_y1[_chnl] + m_oldy1[_chnl] ) * m_p
- m_k * m_y2[_chnl],
10.0f );
m_y3[_chnl] = qBound( -10.0f,
( m_y2[_chnl] + m_oldy2[_chnl] ) * m_p
- m_k * m_y3[_chnl],
10.0f );
m_oldx[_chnl] = x;
m_oldy1[_chnl] = m_y1[_chnl];
m_oldy2[_chnl] = m_y2[_chnl];
out += ( m_y3[_chnl] - m_y3[_chnl] * m_y3[_chnl] * m_y3[_chnl] * ( 1.0f / 6.0f ) );
}
out *= 0.25f;
m_last[_chnl] = _in0;
return out;
break;
}
// 4-pole state-variant lowpass filter, adapted from Nekobee source code
// and extended to other SV filter types
// /* Hal Chamberlin's state variable filter */
case Lowpass_SV:
case Bandpass_SV:
{
float highpass;
for( int i = 0; i < 2; ++i ) // 2x oversample
{
m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl]; /* delay2/4 = lowpass output */
highpass = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
m_delay1[_chnl] = m_svf1 * highpass + m_delay1[_chnl]; /* delay1/3 = bandpass output */
m_delay4[_chnl] = m_delay4[_chnl] + m_svf2 * m_delay3[_chnl];
highpass = m_delay2[_chnl] - m_delay4[_chnl] - m_svq * m_delay3[_chnl];
m_delay3[_chnl] = m_svf2 * highpass + m_delay3[_chnl];
}
/* mix filter output into output buffer */
return m_type == Lowpass_SV
? m_delay4[_chnl]
: m_delay3[_chnl];
break;
}
case Highpass_SV:
{
float hp;
for( int i = 0; i < 2; ++i ) // 2x oversample
{
m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl];
hp = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
m_delay1[_chnl] = m_svf1 * hp + m_delay1[_chnl];
}
return hp;
break;
}
case Notch_SV:
{
float hp1, hp2;
for( int i = 0; i < 2; ++i ) // 2x oversample
{
m_delay2[_chnl] = m_delay2[_chnl] + m_svf1 * m_delay1[_chnl]; /* delay2/4 = lowpass output */
hp1 = _in0 - m_delay2[_chnl] - m_svq * m_delay1[_chnl];
m_delay1[_chnl] = m_svf1 * hp1 + m_delay1[_chnl]; /* delay1/3 = bandpass output */
m_delay4[_chnl] = m_delay4[_chnl] + m_svf2 * m_delay3[_chnl];
hp2 = m_delay2[_chnl] - m_delay4[_chnl] - m_svq * m_delay3[_chnl];
m_delay3[_chnl] = m_svf2 * hp2 + m_delay3[_chnl];
}
/* mix filter output into output buffer */
return m_delay4[_chnl] + hp1;
break;
}
// 4-times oversampled simulation of an active RC-Bandpass,-Lowpass,-Highpass-
// Filter-Network as it was used in nearly all modern analog synthesizers. This
// can be driven up to self-oscillation (BTW: do not remove the limits!!!).
// (C) 1998 ... 2009 S.Fendt. Released under the GPL v2.0 or any later version.
case Lowpass_RC12:
{
sample_t lp, bp, hp, in;
for( int n = 4; n != 0; --n )
{
in = _in0 + m_rcbp0[_chnl] * m_rcq;
in = qBound( -1.0f, in, 1.0f );
lp = in * m_rcb + m_rclp0[_chnl] * m_rca;
lp = qBound( -1.0f, lp, 1.0f );
hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
hp = qBound( -1.0f, hp, 1.0f );
bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
bp = qBound( -1.0f, bp, 1.0f );
m_rclast0[_chnl] = in;
m_rclp0[_chnl] = lp;
m_rchp0[_chnl] = hp;
m_rcbp0[_chnl] = bp;
}
return lp;
break;
}
case Highpass_RC12:
case Bandpass_RC12:
{
sample_t hp, bp, in;
for( int n = 4; n != 0; --n )
{
in = _in0 + m_rcbp0[_chnl] * m_rcq;
in = qBound( -1.0f, in, 1.0f );
hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
hp = qBound( -1.0f, hp, 1.0f );
bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
bp = qBound( -1.0f, bp, 1.0f );
m_rclast0[_chnl] = in;
m_rchp0[_chnl] = hp;
m_rcbp0[_chnl] = bp;
}
return m_type == Highpass_RC12 ? hp : bp;
break;
}
case Lowpass_RC24:
{
sample_t lp, bp, hp, in;
for( int n = 4; n != 0; --n )
{
// first stage is as for the 12dB case...
in = _in0 + m_rcbp0[_chnl] * m_rcq;
in = qBound( -1.0f, in, 1.0f );
lp = in * m_rcb + m_rclp0[_chnl] * m_rca;
lp = qBound( -1.0f, lp, 1.0f );
hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
hp = qBound( -1.0f, hp, 1.0f );
bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
bp = qBound( -1.0f, bp, 1.0f );
m_rclast0[_chnl] = in;
m_rclp0[_chnl] = lp;
m_rcbp0[_chnl] = bp;
m_rchp0[_chnl] = hp;
// second stage gets the output of the first stage as input...
in = lp + m_rcbp1[_chnl] * m_rcq;
in = qBound( -1.0f, in, 1.0f );
lp = in * m_rcb + m_rclp1[_chnl] * m_rca;
lp = qBound( -1.0f, lp, 1.0f );
hp = m_rcc * ( m_rchp1[_chnl] + in - m_rclast1[_chnl] );
hp = qBound( -1.0f, hp, 1.0f );
bp = hp * m_rcb + m_rcbp1[_chnl] * m_rca;
bp = qBound( -1.0f, bp, 1.0f );
m_rclast1[_chnl] = in;
m_rclp1[_chnl] = lp;
m_rcbp1[_chnl] = bp;
m_rchp1[_chnl] = hp;
}
return lp;
break;
}
case Highpass_RC24:
case Bandpass_RC24:
{
sample_t hp, bp, in;
for( int n = 4; n != 0; --n )
{
// first stage is as for the 12dB case...
in = _in0 + m_rcbp0[_chnl] * m_rcq;
in = qBound( -1.0f, in, 1.0f );
hp = m_rcc * ( m_rchp0[_chnl] + in - m_rclast0[_chnl] );
hp = qBound( -1.0f, hp, 1.0f );
bp = hp * m_rcb + m_rcbp0[_chnl] * m_rca;
bp = qBound( -1.0f, bp, 1.0f );
m_rclast0[_chnl] = in;
m_rchp0[_chnl] = hp;
m_rcbp0[_chnl] = bp;
// second stage gets the output of the first stage as input...
in = m_type == Highpass_RC24
? hp + m_rcbp1[_chnl] * m_rcq
: bp + m_rcbp1[_chnl] * m_rcq;
in = qBound( -1.0f, in, 1.0f );
hp = m_rcc * ( m_rchp1[_chnl] + in - m_rclast1[_chnl] );
hp = qBound( -1.0f, hp, 1.0f );
bp = hp * m_rcb + m_rcbp1[_chnl] * m_rca;
bp = qBound( -1.0f, bp, 1.0f );
m_rclast1[_chnl] = in;
m_rchp1[_chnl] = hp;
m_rcbp1[_chnl] = bp;
}
return m_type == Highpass_RC24 ? hp : bp;
break;
}
case Formantfilter:
case FastFormant:
{
if( qAbs( _in0 ) < 1.0e-10f && qAbs( m_vflast[0][_chnl] ) < 1.0e-10f ) { return 0.0f; } // performance hack - skip processing when the numbers get too small
sample_t hp, bp, in;
out = 0;
const int os = m_type == FastFormant ? 1 : 4; // no oversampling for fast formant
for( int o = 0; o < os; ++o )
{
// first formant
in = _in0 + m_vfbp[0][_chnl] * m_vfq;
in = qBound( -1.0f, in, 1.0f );
hp = m_vfc[0] * ( m_vfhp[0][_chnl] + in - m_vflast[0][_chnl] );
hp = qBound( -1.0f, hp, 1.0f );
bp = hp * m_vfb[0] + m_vfbp[0][_chnl] * m_vfa[0];
bp = qBound( -1.0f, bp, 1.0f );
m_vflast[0][_chnl] = in;
m_vfhp[0][_chnl] = hp;
m_vfbp[0][_chnl] = bp;
in = bp + m_vfbp[2][_chnl] * m_vfq;
in = qBound( -1.0f, in, 1.0f );
hp = m_vfc[0] * ( m_vfhp[2][_chnl] + in - m_vflast[2][_chnl] );
hp = qBound( -1.0f, hp, 1.0f );
bp = hp * m_vfb[0] + m_vfbp[2][_chnl] * m_vfa[0];
bp = qBound( -1.0f, bp, 1.0f );
m_vflast[2][_chnl] = in;
m_vfhp[2][_chnl] = hp;
m_vfbp[2][_chnl] = bp;
in = bp + m_vfbp[4][_chnl] * m_vfq;
in = qBound( -1.0f, in, 1.0f );
hp = m_vfc[0] * ( m_vfhp[4][_chnl] + in - m_vflast[4][_chnl] );
hp = qBound( -1.0f, hp, 1.0f );
bp = hp * m_vfb[0] + m_vfbp[4][_chnl] * m_vfa[0];
bp = qBound( -1.0f, bp, 1.0f );
m_vflast[4][_chnl] = in;
m_vfhp[4][_chnl] = hp;
m_vfbp[4][_chnl] = bp;
out += bp;
// second formant
in = _in0 + m_vfbp[0][_chnl] * m_vfq;
in = qBound( -1.0f, in, 1.0f );
hp = m_vfc[1] * ( m_vfhp[1][_chnl] + in - m_vflast[1][_chnl] );
hp = qBound( -1.0f, hp, 1.0f );
bp = hp * m_vfb[1] + m_vfbp[1][_chnl] * m_vfa[1];
bp = qBound( -1.0f, bp, 1.0f );
m_vflast[1][_chnl] = in;
m_vfhp[1][_chnl] = hp;
m_vfbp[1][_chnl] = bp;
in = bp + m_vfbp[3][_chnl] * m_vfq;
in = qBound( -1.0f, in, 1.0f );
hp = m_vfc[1] * ( m_vfhp[3][_chnl] + in - m_vflast[3][_chnl] );
hp = qBound( -1.0f, hp, 1.0f );
bp = hp * m_vfb[1] + m_vfbp[3][_chnl] * m_vfa[1];
bp = qBound( -1.0f, bp, 1.0f );
m_vflast[3][_chnl] = in;
m_vfhp[3][_chnl] = hp;
m_vfbp[3][_chnl] = bp;
in = bp + m_vfbp[5][_chnl] * m_vfq;
in = qBound( -1.0f, in, 1.0f );
hp = m_vfc[1] * ( m_vfhp[5][_chnl] + in - m_vflast[5][_chnl] );
hp = qBound( -1.0f, hp, 1.0f );
bp = hp * m_vfb[1] + m_vfbp[5][_chnl] * m_vfa[1];
bp = qBound( -1.0f, bp, 1.0f );
m_vflast[5][_chnl] = in;
m_vfhp[5][_chnl] = hp;
m_vfbp[5][_chnl] = bp;
out += bp;
}
return m_type == FastFormant ? out * 2.0f : out * 0.5f;
break;
}
default:
out = m_biQuad.update( _in0, _chnl );
break;
}
if( m_doubleFilter )
{
return m_subFilter->update( out, _chnl );
}
// Clipper band limited sigmoid
return out;
}
inline void calcFilterCoeffs( float _freq, float _q )
{
// temp coef vars
_q = qMax( _q, minQ() );
if( m_type == Lowpass_RC12 ||
m_type == Bandpass_RC12 ||
m_type == Highpass_RC12 ||
m_type == Lowpass_RC24 ||
m_type == Bandpass_RC24 ||
m_type == Highpass_RC24 )
{
_freq = qBound( 50.0f, _freq, 20000.0f );
const float sr = m_sampleRatio * 0.25f;
const float f = 1.0f / ( _freq * F_2PI );
m_rca = 1.0f - sr / ( f + sr );
m_rcb = 1.0f - m_rca;
m_rcc = f / ( f + sr );
// Stretch Q/resonance, as self-oscillation reliably starts at a q of ~2.5 - ~2.6
m_rcq = _q * 0.25f;
return;
}
if( m_type == Formantfilter ||
m_type == FastFormant )
{
_freq = qBound( minFreq(), _freq, 20000.0f ); // limit freq and q for not getting bad noise out of the filter...
// formats for a, e, i, o, u, a
static const float _f[6][2] = { { 1000, 1400 }, { 500, 2300 },
{ 320, 3200 },
{ 500, 1000 },
{ 320, 800 },
{ 1000, 1400 } };
static const float freqRatio = 4.0f / 14000.0f;
// Stretch Q/resonance
m_vfq = _q * 0.25f;
// frequency in lmms ranges from 1Hz to 14000Hz
const float vowelf = _freq * freqRatio;
const int vowel = static_cast<int>( vowelf );
const float fract = vowelf - vowel;
// interpolate between formant frequencies
const float f0 = 1.0f / ( linearInterpolate( _f[vowel+0][0], _f[vowel+1][0], fract ) * F_2PI );
const float f1 = 1.0f / ( linearInterpolate( _f[vowel+0][1], _f[vowel+1][1], fract ) * F_2PI );
// samplerate coeff: depends on oversampling
const float sr = m_type == FastFormant ? m_sampleRatio : m_sampleRatio * 0.25f;
m_vfa[0] = 1.0f - sr / ( f0 + sr );
m_vfb[0] = 1.0f - m_vfa[0];
m_vfc[0] = f0 / ( f0 + sr );
m_vfa[1] = 1.0f - sr / ( f1 + sr );
m_vfb[1] = 1.0f - m_vfa[1];
m_vfc[1] = f1 / ( f1 + sr );
return;
}
if( m_type == Moog ||
m_type == DoubleMoog )
{
// [ 0 - 0.5 ]
const float f = qBound( minFreq(), _freq, 20000.0f ) * m_sampleRatio;
// (Empirical tunning)
m_p = ( 3.6f - 3.2f * f ) * f;
m_k = 2.0f * m_p - 1;
m_r = _q * powf( F_E, ( 1 - m_p ) * 1.386249f );
if( m_doubleFilter )
{
m_subFilter->m_r = m_r;
m_subFilter->m_p = m_p;
m_subFilter->m_k = m_k;
}
#ifdef MOOG_SSE
// SSE vector setup
p_v = _mm_set_ps1(m_p);
k_v = _mm_set_ps1(m_k);
r_v = _mm_set_ps1(m_r);
#endif
return;
}
if( m_type == Tripole )
{
const float f = qBound( 20.0f, _freq, 20000.0f ) * m_sampleRatio * 0.25f;