-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathph_train.py
212 lines (181 loc) · 9.07 KB
/
ph_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import hgtk
import pickle
import sys
import ph_model
import ph_data_reader
import numpy as np
import os
from numpy import dot
from numpy.linalg import norm
flags = tf.app.flags
flags.DEFINE_string("input_vec", './data/NN-numalp-space-ep200em200min24.vec', "input vector location.")
flags.DEFINE_string("model_save_path", './saved_model/', "Directory to write the model.")
flags.DEFINE_string("cuda_device", '2', "Cuda device to run")
flags.DEFINE_integer("embedding_size", 200, "Size of Input vector embedding size")
flags.DEFINE_float("learning_rate", 0.1, "Initial learning rate.")
flags.DEFINE_float("dropout", 0.8, "drop out")
flags.DEFINE_float("max_grad_norm", 5.0, "max gradient norm")
flags.DEFINE_integer("batch_size", 20, "batch size")
flags.DEFINE_integer("highway_layer", 7, "num of highway layer")
flags.DEFINE_integer("epochs_to_train", 12, "epochs to train")
flags.DEFINE_boolean("inference_mode", False, "Inference mode for OOV")
flags.DEFINE_integer("lr_decay_step", 10000, "every decay step lr decay")
FLAGS = flags.FLAGS
os.environ['LANG'] = 'ko_KR.utf8'
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.cuda_device
# Vector preprocessing.
ph_data_reader.vector_preprocessing(FLAGS.input_vec)
#train data manipulation.
exlist =[ '자본주의', '백과사전','순간이동', '오른손', '파란색', '달라진다', '일어나기','경제학'
,'쓰러졌다', '인민공화국', '북유럽', '아이언맨', '명예훼손']
# Vectors are already L2 normalized, so not necessary to norm.
def cosine_sim(a,b):
return dot(a, b)/(norm(a)*norm(b))
# in: word exclude list, ret : dict values of excluded word.
# ex_vec_list : == list shape(n, array(1,200) ) x[n][0] = word, x[n][1] = (1,200)
def word_exclude_for_test(ex_wd_list):
ex_wd_dct={}
for i in ex_wd_list:
ex_wd_dct.update(ph_data_reader.exclude_word(i))
return ex_wd_dct
def inference_word(session, valid_model, word):
evx =ph_data_reader.unk_padder(word)
# Evaluation. fv shape = (1,word_emb_size)
fv2 = session.run(
valid_model.fv2
, {
valid_model.input : evx
})
fv2=fv2[0]
return fv2
# Function for evaluation, similarity.
# Usage : evx_str= OOV word for inference, evy_str= test word for similarity.
def word_distance(session, valid_model, evx_str, evy_str):
#evx (1,29) evy (1,word_emb_size)
#evx : ph_model input character padded.
#evy : known word, from w2v voc vector.
#fv2 : ph_model output of evx char padding.
evy =ph_data_reader.w2v(evy_str)
evy=evy[0]
fv2 = inference_word(session, valid_model, evx_str)
sim = cosine_sim(fv2,evy)
print(evy_str +' sim=%6.5f' %(sim), end=' ')
# Usage : w2v_known_test('일어','나기')
def w2v_known_test(a,b, c=0.5,d=0.5 ):
evy =ph_data_reader.w2v(a)
evy2 =ph_data_reader.w2v(b)
ev3 = evy*c + evy2*d
# ev3 for composed vector rate of c,d. compare to a+b known word vector.
x = cosine_sim(ev3[0], ph_data_reader.w2v(a+b)[0])
print(a+'/'+b+' w2v composition sim: ' +str(x))
def validate_model():
# validate generated OOV vector with known words.
ex1 = '수박아이스크림'
word_distance(session, valid_model, ex1, '수박')
word_distance(session, valid_model, ex1, '아이스크림')
word_distance(session, valid_model, ex1, '아이')
word_distance(session, valid_model, ex1, '스크림')
word_distance(session, valid_model, ex1, '아이스')
word_distance(session, valid_model, ex1, '크림\n')
# validate character level generated vector by word similarity.
word_distance(session, valid_model, '전기자동차', '전기')
word_distance(session, valid_model, '전기자동차', '자동차')
word_distance(session, valid_model, '오토바이헬멧', '오토바이')
word_distance(session, valid_model, '오토바이헬멧', '헬멧\n')
word_distance(session, valid_model, '아이스크림', '아이스크림')
word_distance(session, valid_model, '인공지능', '인공지능\n')
def main(_):
global exlist
saver=None
with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as session:
param_init=0.05
initializer = tf.random_uniform_initializer(-param_init, param_init)
# Vector preprocessing.
ph_data_reader.vector_preprocessing(FLAGS.input_vec)
ph_data_reader.processing(btch_size=FLAGS.batch_size)
with tf.variable_scope("Model", initializer=initializer):
train_model = ph_model.inference_graph2(batch_size=FLAGS.batch_size
, word_embed_size=FLAGS.embedding_size
, max_word_length=ph_data_reader.mwlen
, num_highway_layers=FLAGS.highway_layer)
train_model.update(ph_model.loss_graph2(batch_size=FLAGS.batch_size
,fv2=train_model.fv2, word_embed_size=FLAGS.embedding_size))
train_model.update(ph_model.training_graph2(loss=train_model.loss, learning_rate=FLAGS.learning_rate
,lr_decay_step=FLAGS.lr_decay_step
,max_grad_norm=FLAGS.max_grad_norm))
# create saver before creating more graph nodes, so that we do not save any vars defined below
saver = tf.train.Saver()
with tf.variable_scope("Model", reuse=True):
# Batch size is 1 - one inference at one time. (self limiatation)
valid_model = ph_model.inference_graph2(batch_size=1,word_embed_size=FLAGS.embedding_size
,max_word_length=ph_data_reader.mwlen
,num_highway_layers=FLAGS.highway_layer)
valid_model.update(ph_model.loss_graph2(valid_model.fv2, batch_size=1, word_embed_size=FLAGS.embedding_size))
if not FLAGS.inference_mode:
#train data manipulation.
tf.global_variables_initializer().run()
session.run(train_model.clear_char_embedding_padding)
# Excluded for training exlist words for OOV sim test.
ex_word_dict = word_exclude_for_test(exlist)
print('deleted word : ', end='')
for i in ex_word_dict:
print(ex_word_dict[i][0].decode('utf-8') ,end=' ')
print()
# xs shape (2587, batch_size, max_word_len(mwlen)), ys shape (2587, batch_size, word_emb_size)
xs, ys = ph_data_reader.processing(btch_size=FLAGS.batch_size)
#after batch data made, add excluded words to wdict for w2v test.
ph_data_reader.update_wdict(ex_word_dict)
# Count for log print.
count=0
count2=0
for i in range(FLAGS.epochs_to_train):
print('-epoch %d ' %(i))
for xline, yline in zip(xs,ys):
#xline (20,29) yline (20,word_emb_size)
count+=1
#prob for drop out in training.
loss, step, _,_, learning_rate = session.run([
train_model.loss,
train_model.global_step ,
train_model.clear_char_embedding_padding,
train_model.train_op,
train_model.learning_rate2
], {
train_model.input : xline,
train_model.ansy : yline,
train_model.prob : FLAGS.dropout
})
if count%3000==0:
print('step=%6d, loss=%6.8f, lr=%6.8f' %(step, loss, learning_rate))
count2+=1
if count2%1==0:
validate_oov()
if count2%1==0:
print('--test results for OOV & Known word Similarity---')
for ii in exlist:
word_distance(session, valid_model, ii, ii)
print('--------------------------------------------')
saver.save(session, os.path.join(FLAGS.model_save_path, "model.ckpt"), global_step=step)
print('model saved, training done')
else :
checkpoint = tf.train.latest_checkpoint(FLAGS.model_save_path)
saver.restore(session, checkpoint)
# print('input words')
# sys.stdout.flush()
try:
for line in sys.stdin:
line=line.replace('\n','')
vec = inference_word(session, valid_model, line)
sys.stdout.write(line +' ')
for i in vec:
sys.stdout.write(str(i) + ' ')
sys.stdout.write('\n')
except KeyboardInterrupt:
sys.stdout.flush()
pass
if __name__ == "__main__":
tf.app.run()