-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrainer.py
699 lines (592 loc) · 33 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
from models import *
import wandb
import os
import sys
import torch
import shutil
import logging
from torch_geometric.data import Data, Batch
from tqdm import tqdm
import transformers
import torch.optim as optim
from sklearn.metrics import roc_auc_score
import matplotlib.pyplot as plt
from datetime import datetime
import time
import pdb
import numpy as np
from load_kg_dataset import PairSubgraphsFewShotDataLoader
import torch.nn.functional as F
import optuna
class Trainer:
def __init__(self, data_loaders, dataset, parameter):
self.parameter = parameter
# data loader
self.train_data_loader = data_loaders[0]
self.dev_data_loader = data_loaders[1]
self.test_data_loader = data_loaders[2]
self.dev_data_loader_ranktail = data_loaders[3]
self.test_data_loader_ranktail = data_loaders[4]
self.pretrain_data_loader = data_loaders[5]
# parameters
self.few = parameter['few']
self.num_query = parameter['num_query']
self.batch_size = parameter['batch_size']
self.learning_rate = parameter['learning_rate']
self.early_stopping_patience = parameter['early_stopping_patience']
self.niters = parameter['niters']
self.threshold = parameter['threshold']
# epoch
self.epoch = parameter['epoch']
self.print_epoch = parameter['print_epoch']
self.eval_epoch = parameter['eval_epoch']
self.checkpoint_epoch = parameter['checkpoint_epoch']
# device
self.device = parameter['device']
self.coefficient = parameter['coefficient']
self.coefficient2 = parameter['coefficient2']
self.finetune = parameter['finetune']
self.finetune_on_train = parameter['finetune_on_train']
self.margin = parameter['margin']
self.debug = parameter['debug']
self.pretrain_on_bg = parameter['pretrain_on_bg']
self.support_only = parameter['support_only']
self.opt_mask = parameter['opt_mask']
self.use_atten = parameter['use_atten']
self.egnn_only = parameter['egnn_only']
orig_name = self.parameter['prefix']
self.parameter['prefix'] = self.parameter['prefix'] + "_" + datetime.now().strftime("%d_%m_%Y_%H_%M_%S")
self.metaR = CSR(self.train_data_loader.dataset, parameter)
self.metaR.to(self.device)
# optimizer
self.metaR.forward_res = None
self.metaR.backward_res = None
# freeze rgcn
if parameter['freeze_edge_emb']:
for para in self.metaR.embedding_learner.edge_embedding.parameters():
para.requires_grad = False
if parameter['freeze_node_emb']:
for para in self.metaR.embedding_learner.node_embedding.parameters():
para.requires_grad = False
if parameter['freeze_rgcn']:
for para in self.metaR.embedding_learner.rgcn.parameters():
para.requires_grad = False
self.optimizer = optim.AdamW(filter(lambda p: p.requires_grad, self.metaR.parameters()), lr=self.learning_rate)
self.scheduler = transformers.get_linear_schedule_with_warmup(self.optimizer, 0, self.epoch)
if self.parameter['step'] == "pretrain":
self.rgcn_optimizer = optim.AdamW(filter(lambda p: p.requires_grad, self.metaR.embedding_learner.rgcn.parameters()), lr=self.learning_rate)
self.rgcn_scheduler = transformers.get_linear_schedule_with_warmup(self.rgcn_optimizer, 0, self.epoch)
if self.parameter['final']:
# for grouping
wandb.init(project="fewshotKG", entity=self.parameter['wandb_name'], name =orig_name + "_final", config = parameter)
else:
wandb.init(project="fewshotKG", entity=self.parameter['wandb_name'], name = self.parameter['prefix'], config = parameter)
# wandb.run.log_code(".") # could be too slow
wandb.save("main.py")
wandb.save("trainer.py")
wandb.save("protgnn_models.py")
wandb.save("RGCN.py")
wandb.watch(self.metaR, log_freq=100)
# dir
self.state_dir = os.path.join(self.parameter['state_dir'], self.parameter['prefix'])
if not os.path.isdir(self.state_dir):
os.makedirs(self.state_dir)
self.ckpt_dir = os.path.join(self.parameter['state_dir'], self.parameter['prefix'], 'checkpoint')
if not os.path.isdir(self.ckpt_dir):
os.makedirs(self.ckpt_dir)
self.state_dict_file = ''
# logging
self.logging_dir = os.path.join(self.parameter['log_dir'], self.parameter['prefix'], 'data')
if not os.path.isdir(self.logging_dir):
os.makedirs(self.logging_dir)
else:
print(self.logging_dir, "already exists!!!")
sys.exit()
self.html_f = open(os.path.join(self.parameter['log_dir'], self.parameter['prefix'], 'data',"display.html"), "w")
if self.parameter['encoder_state_dir'] is not None:
encoder_ckpt = torch.load(self.parameter['encoder_state_dir'], map_location='cpu')
self.metaR.embedding_learner.rgcn.load_state_dict(encoder_ckpt)
if self.parameter['prev_state_dir'] is not None:
prev_ckpt = torch.load(self.parameter['prev_state_dir'], map_location='cpu')
self.metaR.load_state_dict(prev_ckpt, strict=False)
if self.parameter['transfer_state_dir'] is not None:
prev_ckpt = torch.load(self.parameter['transfer_state_dir'], map_location='cpu')
del prev_ckpt["embedding_learner.edge_embedding.weight"]
del prev_ckpt["embedding_learner.rgcn.edge_embedding.weight"]
del prev_ckpt["embedding_learner.egnn.edge_embedding.weight"]
del prev_ckpt["embedding_learner.csg_gnn.edge_embedding.weight"]
if "embedding_learner.node_embedding.weight" in prev_ckpt:
del prev_ckpt["embedding_learner.node_embedding.weight"]
del prev_ckpt["embedding_learner.rgcn.node_embedding.weight"]
del prev_ckpt["embedding_learner.egnn.node_embedding.weight"]
del prev_ckpt["embedding_learner.csg_gnn.node_embedding.weight"]
self.metaR.load_state_dict(prev_ckpt, strict=False)
def reload(self):
if self.parameter['eval_ckpt'] is not None:
state_dict_file = os.path.join(self.ckpt_dir, 'state_dict_' + self.parameter['eval_ckpt'] + '.ckpt')
else:
state_dict_file = os.path.join(self.state_dir, 'state_dict')
self.state_dict_file = state_dict_file
print('reload state_dict from {}'.format(state_dict_file))
state = torch.load(state_dict_file, map_location=self.device)
if os.path.isfile(state_dict_file):
self.metaR.load_state_dict(state)
else:
raise RuntimeError('No state dict in {}!'.format(state_dict_file))
def save_checkpoint(self, epoch):
torch.save(self.metaR.state_dict(), os.path.join(self.ckpt_dir, 'state_dict_' + str(epoch) + '.ckpt'))
def save_rgcn_checkpoint(self, epoch):
torch.save(self.metaR.embedding_learner.rgcn.state_dict(), os.path.join(self.ckpt_dir, 'rgcn_state_dict_' + str(epoch) + '.ckpt'))
def del_checkpoint(self, epoch):
path = os.path.join(self.ckpt_dir, 'state_dict_' + str(epoch) + '.ckpt')
if os.path.exists(path):
os.remove(path)
else:
raise RuntimeError('No such checkpoint to delete: {}'.format(path))
def save_best_state_dict(self, best_epoch):
shutil.copy(os.path.join(self.ckpt_dir, 'state_dict_' + str(best_epoch) + '.ckpt'),
os.path.join(self.state_dir, 'state_dict'))
def write_training_log(self, data, epoch, is_eval_loss = False):
wandb.log({'Training_Loss' + ("_eval" if is_eval_loss else ""): data['Loss'], "epoch": epoch})
wandb.log({'Extra_Loss'+ ("_eval" if is_eval_loss else ""): data['Extra_Loss'], "epoch": epoch})
def write_validating_log(self, data, epoch):
wandb.log({'Acc': data['Acc'], "epoch": epoch})
wandb.log({'F1': data['F1'], "epoch": epoch})
wandb.log({'IOU': data['IOU'], "epoch": epoch})
wandb.log({'ROC': data['ROC'], "epoch": epoch})
wandb.log({'AVG ROC': data['AVG_ROC'], "epoch": epoch})
wandb.log({'coverage': data['coverage'], "epoch": epoch})
def write_validating_rank_log(self, data, epoch):
wandb.log({'Validating_MRR': data['MRR'], "epoch": epoch})
wandb.log({'Validating_Hits_10': data['Hits@10'], "epoch": epoch})
wandb.log({'Validating_Hits_5': data['Hits@5'], "epoch": epoch})
wandb.log({'Validating_Hits_1': data['Hits@1'], "epoch": epoch})
def rank_predict(self, data, x, ranks):
# query_idx is the idx of positive score
query_idx = x.shape[0] - 1
# sort all scores with descending, because more plausible triple has higher score
_, idx = torch.sort(x, descending=True)
rank = list(idx.cpu().numpy()).index(query_idx) + 1
ranks.append(rank)
# update data
if rank <= 10:
data['Hits@10'] += 1
if rank <= 5:
data['Hits@5'] += 1
if rank == 1:
data['Hits@1'] += 1
data['MRR'] += 1.0 / rank
def do_one_step(self, task, iseval=False, is_eval_loss = False , curr_rel='', trial = None, best_params = None):
loss, p_score, n_score = 0, 0, 0
if not iseval and not is_eval_loss:
if self.use_atten:
self.optimizer.zero_grad()
if self.opt_mask:
loss, extra_loss, edgemask, edge_mask_neg, p_score, n_score = self.metaR(task, False, False, curr_rel, trial, best_params)
else:
p_score, n_score, extra_loss, edgemask, edge_mask_neg = self.metaR(task, False, False, curr_rel, trial, best_params)
y = torch.Tensor([1]).to(self.device)
loss = self.metaR.loss_func(p_score, n_score, y) + extra_loss
if self.debug:
pdb.set_trace()
if self.use_atten:
loss.backward()
self.optimizer.step()
elif is_eval_loss and len(task[-4][0]) < 100 and len(task[-2][0]) < 100:
with torch.no_grad():
if self.opt_mask:
loss, extra_loss, edgemask, edge_mask_neg, p_score, n_score = self.metaR(task, False, True, curr_rel, trial, best_params)
else:
p_score, n_score, extra_loss, edgemask, edge_mask_neg = self.metaR(task, False, True, curr_rel, trial, best_params)
y = torch.Tensor([1]).to(self.device)
loss = self.metaR.loss_func(p_score, n_score, y) + extra_loss
elif is_eval_loss and len(task[-4][0]) == 1:
### batch queries for ranking, where there less much pos than negs
with torch.no_grad():
if self.use_atten:
eval_bs = 100
else:
eval_bs = 100 # for opt
all_p_scores = []
all_n_scores = []
for idx in range(0, len(task[-2][0]), eval_bs):
end = idx + eval_bs
if end > len(task[-2][0]):
end = len(task[-2][0])
# repeat the evaluation of positives
sub_task = task[:-2] + ([task[-2][0][idx:end]], Batch.from_data_list(task[-1].to_data_list()[idx:end]))
p_score, n_score, extra_loss, edgemask, edge_mask_neg = self.metaR(sub_task, iseval, is_eval_loss, curr_rel, trial, best_params)
all_n_scores.append(n_score.detach())
n_score = torch.cat(all_n_scores, 0)
y = torch.Tensor([1]).to(self.device)
loss = self.metaR.loss_func(p_score, n_score, y)+ extra_loss
else:
### batch queries for roc, where there are paired pos and negs
with torch.no_grad():
if self.use_atten:
eval_bs = 10
if self.train_data_loader.dataset.dataset == "Wiki":
eval_bs = 1
else:
eval_bs = 100 # for opt
# eval_bs = 200 # for opt
all_p_scores = []
all_n_scores = []
for idx in range(0, len(task[-4][0]), eval_bs):
end = idx + eval_bs
if end > len(task[-4][0]):
end = len(task[-4][0])
sub_task = task[:-4] + ([task[-4][0][idx:end]], Batch.from_data_list(task[-3].to_data_list()[idx:end]), [task[-2][0][idx:end]], Batch.from_data_list(task[-1].to_data_list()[idx:end]))
p_score, n_score, extra_loss, edgemask, edge_mask_neg = self.metaR(sub_task, iseval, is_eval_loss, curr_rel, trial, best_params)
all_p_scores.append(p_score.detach())
all_n_scores.append(n_score.detach())
p_score = torch.cat(all_p_scores, 0)
n_score = torch.cat(all_n_scores, 0)
y = torch.Tensor([1]).to(self.device)
loss = self.metaR.loss_func(p_score, n_score, y)+ extra_loss
return loss, extra_loss, p_score, n_score, edgemask, edge_mask_neg
def pretrain_one_step(self, task, iseval=False, is_eval_loss = False , curr_rel=''):
loss, p_score, n_score = 0, 0, 0
if not iseval and not is_eval_loss:
self.optimizer.zero_grad()
masks, reconstructed_masks, p_score, n_score = self.metaR.cycle_consistency(task)
recon_loss = self.metaR.cycle_loss_func(masks, reconstructed_masks)
contrastive_loss = torch.nn.MarginRankingLoss(self.margin)(p_score, n_score, torch.Tensor([1]).to(self.device))
loss = self.coefficient * recon_loss + self.coefficient2 * contrastive_loss
loss.backward()
self.optimizer.step()
elif is_eval_loss:
assert False
return loss, recon_loss, contrastive_loss, (torch.sum(masks)/masks.shape[0]).item(), (torch.sum(reconstructed_masks)/masks.shape[0]).item(), (torch.sum((reconstructed_masks > 0.5).float())/masks.shape[0]).item(), masks, reconstructed_masks
def pretrain(self):
# initialization
best_epoch = 0
best_value = 0
bad_counts = 0
valid_data = self.eval_roc(istest=False, epoch=0)
self.eval_roc(istest=True, epoch=0)
self.eval(istest=False, epoch=0)
self.eval(istest=True, epoch=0)
# training by epoch
t_load, t_one_step = 0, 0
pbar = tqdm(range(self.epoch))
for e in pbar:
self.metaR.train()
# sample one batch from data_loader
t1 = time.time()
if self.pretrain_on_bg:
train_task, curr_rel = self.pretrain_data_loader.next_batch()
else:
train_task, curr_rel = self.train_data_loader.next_batch()
t2 = time.time()
loss, recon_loss, contrastive_loss, ones_in_masks, ones_in_reconstructed_masks, thresholded_ones_in_reconstructed_masks, masks, reconstructed_masks = self.pretrain_one_step(train_task, iseval=False, curr_rel=curr_rel)
if self.finetune:
finetune_loss, finetune_extra_loss, p_score, n_score, edgemask, edge_mask_neg = self.do_one_step(train_task, iseval=False, is_eval_loss=False)
else:
finetune_loss = 0
## eval iou
subgraph = train_task[1]
row, col = subgraph.edge_index
gt = subgraph.edge_index[:, masks == 1].transpose(0, 1).tolist()
gt_batch = subgraph.batch[row][masks == 1]
pred = subgraph.edge_index[:, reconstructed_masks > 0.5].transpose(0, 1).tolist()
pred_batch = subgraph.batch[row][reconstructed_masks > 0.5]
gt_edges = [set() for _ in range(24)]
for idx in range(len(gt)):
gt_edges[gt_batch[idx]].add(tuple(gt[idx]))
pred_edges = [set() for _ in range(24)]
for idx in range(len(pred)):
pred_edges[pred_batch[idx]].add(tuple(pred[idx]))
ious = []
for i in range(24):
iou = len(gt_edges[i].intersection(pred_edges[i])) / (len(gt_edges[i].union(pred_edges[i]) ) + 0.001)
ious.append(iou)
iou = (sum(ious)/len(ious))
if self.finetune_on_train:
train_task, curr_rel = self.train_data_loader.next_batch()
finetune_on_train_loss, finetune_extra_loss, p_score, n_score, edgemask, edge_mask_neg = self.do_one_step(train_task, iseval=False, is_eval_loss=False)
else:
finetune_on_train_loss = 0
t3 = time.time()
t_load += t2 - t1
t_one_step += t3 - t2
pbar.set_description("masks: %.4f, recon: %.4f, t_rec: %.4f, iou: %.4f" % (ones_in_masks, ones_in_reconstructed_masks, thresholded_ones_in_reconstructed_masks, iou))
self.scheduler.step()
# print the loss on specific epoch
wandb.log({"train_loss": loss, "epoch": e, "iou": iou})
wandb.log({"train_recon_loss": recon_loss, "epoch": e, "train_contrastive_loss": contrastive_loss})
wandb.log({"train_finetune_loss": finetune_loss, "epoch": e})
wandb.log({"train_finetune_on_train_loss": finetune_on_train_loss, "epoch": e})
if e % self.checkpoint_epoch == 0 and e != 0:
print('Epoch {} has finished, saving...'.format(e))
self.save_checkpoint(e)
if e % self.eval_epoch == 0 and e != 0:
self.eval_roc(istest=False, epoch=e)
self.eval_roc(istest=True, epoch=e)
self.eval(istest=False, epoch=e)
self.eval(istest=True, epoch=e)
pass
def train(self):
# initialization
best_epoch = 0
best_value = 0
bad_counts = 0
# training by epoch
t_load, t_one_step = 0, 0
pbar = tqdm(range(self.epoch))
for e in pbar:
self.metaR.train()
# sample one batch from data_loader
t1 = time.time()
train_task, curr_rel = self.train_data_loader.next_batch()
t2 = time.time()
loss, extra_loss,_, _, edge_mask, edge_mask_neg = self.do_one_step(train_task, iseval=False, curr_rel=curr_rel)
t3 = time.time()
t_load += t2 - t1
t_one_step += t3 - t2
pbar.set_description("load: %s, step: %s" % (t_load/(e+1), t_one_step/(e+1)))
self.scheduler.step()
# print the loss on specific epoch
if e % self.print_epoch == 0:
if self.support_only:
query_subgraphs = train_task[1]
query_subgraphs_neg = train_task[3]
else:
query_subgraphs = train_task[5]
query_subgraphs_neg = train_task[7]
loss_num = loss.item()
threshold = self.threshold
print(self.metaR.forward_res)
print(self.metaR.backward_res)
self.write_training_log({'Loss': loss_num, 'Extra_Loss':extra_loss.item()}, e)
print("Epoch: {}\tLoss: {:.4f} Loss extra: {:.4f}".format(e, loss_num, extra_loss.item()))
if not self.egnn_only:
print(edge_mask.min(), edge_mask.mean(), edge_mask.max(), edge_mask.sum())
self.html_f.write("<p>Epoch: {}\tLoss: {:.4f} Loss extra: {:.4f} </p>".format(e, loss_num, extra_loss.item()))
self.html_f.write("<p>Mask min: {:.4f} Mask mean: {:.4f} Mask max: {:.4f} Mask sum: {:.4f} </p>".format(edge_mask.min(), edge_mask.mean(), edge_mask.max(), edge_mask.sum()))
if hasattr(query_subgraphs, "rule_mask"):
print(query_subgraphs.edge_attr[query_subgraphs.rule_mask==1])
row, col = query_subgraphs.edge_index
print(query_subgraphs.batch[row][edge_mask>threshold])
print(query_subgraphs.edge_attr[edge_mask>threshold])
print((edge_mask>threshold).sum())
if hasattr(query_subgraphs, "rule_mask") and edge_mask is not None:
gt = query_subgraphs.edge_index[:,query_subgraphs.rule_mask==1].transpose(0,1).tolist()
gt_batch = query_subgraphs.batch[row][query_subgraphs.rule_mask==1]
pred = query_subgraphs.edge_index[:,edge_mask>threshold].transpose(0,1).tolist()
pred_batch = query_subgraphs.batch[row][edge_mask>threshold]
gt_edges = [set() for _ in range(24)]
for idx in range(len(gt)):
gt_edges[gt_batch[idx]].add(tuple(gt[idx]))
pred_edges = [set() for _ in range(24)]
for idx in range(len(pred)):
pred_edges[pred_batch[idx]].add(tuple(pred[idx]))
ious = []
for i in range(24):
iou = len(gt_edges[i].intersection(pred_edges[i])) / len(gt_edges[i].union(pred_edges[i]) )
ious.append(iou)
avg_iou = sum(ious)/len(ious)
coverage = sum([len(gt_edges[i].intersection(pred_edges[i])) for i in range(24)]) / sum([len(gt_edges[i]) for i in range(24)])
print(avg_iou)
print(coverage)
wandb.log({"train_iou": avg_iou, "epoch": e})
wandb.log({"train_coverage": coverage, "epoch": e})
self.html_f.write("<p>iou: {:.4f} intersection: {:.4f} </p>".format(avg_iou, coverage))
torch.save([query_subgraphs.detach().cpu(), edge_mask.detach().cpu()],os.path.join( self.logging_dir, f"train_{e}.pt") )
torch.save([query_subgraphs_neg.detach().cpu(), edge_mask_neg.detach().cpu()],os.path.join( self.logging_dir, f"train_neg_{e}.pt") )
self.html_f.write(f"<img src=\"train_{e}.jpg\" width=\"1500\" height=\"150\" />")
self.html_f.write(f"<img src=\"train_neg_{e}.jpg\" width=\"1500\" height=\"150\" />")
if not self.use_atten:
for i in range(1,8):
self.html_f.write(f"<img src=\"train_{e}_task_{i}.jpg\" width=\"1500\" height=\"150\" />")
self.html_f.write(f"<img src=\"train_neg_{e}_task_{i}.jpg\" width=\"1500\" height=\"150\" />")
self.html_f.flush()
# save checkpoint on specific epoch
if e % self.checkpoint_epoch == 0 and e != 0:
print('Epoch {} has finished, saving...'.format(e))
self.save_checkpoint(e)
if e % self.eval_epoch == 0 and e != 0:
valid_data = self.eval_roc(istest=False, epoch=e)
self.write_training_log(valid_data, e, is_eval_loss = True)
self.eval_roc(istest=True, epoch=e)
self.eval(istest=True, epoch=e)
self.write_validating_log(valid_data, e)
metric = self.parameter['metric']
# early stopping checking
if valid_data[metric] > best_value:
best_value = valid_data[metric]
best_epoch = e
print('\tBest model | {0} of valid set is {1:.3f}'.format(metric, best_value))
bad_counts = 0
# save current besnnnt
self.save_checkpoint(best_epoch)
else:
print('\tBest {0} of valid set is {1:.3f} at {2} | bad count is {3}'.format(
metric, best_value, best_epoch, bad_counts))
bad_counts += 1
print('Training has finished')
print('\tBest epoch is {0} | {1} of valid set is {2:.3f}'.format(best_epoch, metric, best_value))
self.save_best_state_dict(best_epoch)
print('Finish')
def hyperparameter_tune(self, istest=False, epoch=None):
self.metaR.eval()
# clear sharing rel_q
self.metaR.rel_q_sharing = dict()
def objective(trial):
data = self.eval_roc(istest=istest, trial = trial)
return - data["ROC"]
study = optuna.create_study()
study.optimize(objective, n_trials=50)
print(study.best_params)
self.eval_roc(istest=False, best_params = study.best_params)
self.eval_roc(istest=True, best_params = study.best_params)
# self.eval(istest=False, best_params = study.best_params)
self.eval(istest=True, best_params = study.best_params)
return
def eval_roc(self, istest=False, epoch=None, trial = None, best_params = None):
self.metaR.eval()
# clear sharing rel_q
self.metaR.rel_q_sharing = dict()
if istest:
data_loader = self.test_data_loader
else:
data_loader = self.dev_data_loader
# initial return data of validation
data = {'Loss': 0, 'Extra_Loss': 0, "Acc" : 0, "F1": 0, "ROC": 0, "AVG_ROC": 0}
ranks = []
t = 0
temp = dict()
TP = 0
TN = 0
FP = 0
FN = 0
IOU = 0
coverage = 0
all_scores_pos = []
all_scores_neg = []
all_rocs = []
thresh = torch.log(torch.tensor(0.5))
for batch_idx, batch in tqdm(enumerate(data_loader)):
# sample all the eval tasks
eval_task, curr_rel = batch
loss, extra_loss, p_score, n_score, edge_mask, edge_mask_neg = self.do_one_step(eval_task, iseval=False, is_eval_loss = True , curr_rel=curr_rel, trial = trial, best_params = best_params)
data['Loss'] += loss.item()
data["Extra_Loss"] += extra_loss.item()
if self.support_only:
n = 3 * len(curr_rel)
query_subgraphs = eval_task[1]
query_subgraphs_neg = eval_task[3]
else:
n = 10 * len(curr_rel)
query_subgraphs = eval_task[5]
query_subgraphs_neg = eval_task[7]
if hasattr(query_subgraphs, "rule_mask") and edge_mask is not None:
threshold = self.threshold
row, col = query_subgraphs.edge_index
gt = query_subgraphs.edge_index[:,query_subgraphs.rule_mask==1].transpose(0,1).tolist()
gt_batch = query_subgraphs.batch[row][query_subgraphs.rule_mask==1]
pred = query_subgraphs.edge_index[:,edge_mask>threshold].transpose(0,1).tolist()
pred_batch = query_subgraphs.batch[row][edge_mask>threshold]
gt_edges = [set() for _ in range(n)]
for idx in range(len(gt)):
gt_edges[gt_batch[idx]].add(tuple(gt[idx]))
pred_edges = [set() for _ in range(n)]
for idx in range(len(pred)):
pred_edges[pred_batch[idx]].add(tuple(pred[idx]))
ious = []
coverages = []
for i in range(n):
iou = len(gt_edges[i].intersection(pred_edges[i])) / len(gt_edges[i].union(pred_edges[i]) )
ious.append(iou)
IOU += sum(ious)/len(ious)
coverage += sum([len(gt_edges[i].intersection(pred_edges[i])) for i in range(n)]) / sum([len(gt_edges[i]) for i in range(n)])
else:
IOU = 0
all_scores_pos.append(p_score)
all_scores_neg.append(n_score)
if not self.support_only:
cur_roc = roc_auc_score(torch.cat([torch.ones(p_score.shape), torch.zeros(n_score.shape)]) , torch.cat([p_score, n_score]).cpu() )
print(cur_roc)
all_rocs.append(cur_roc)
if query_subgraphs is not None and edge_mask is not None:
torch.save([query_subgraphs.detach().cpu(), edge_mask.detach().cpu()],os.path.join( self.logging_dir, f"eval_batch_{batch_idx}_{epoch}.pt") )
torch.save([query_subgraphs_neg.detach().cpu(), edge_mask_neg.detach().cpu()],os.path.join( self.logging_dir, f"eval_neg_batch_{batch_idx}_{epoch}.pt") )
TP += (p_score > thresh).float().sum()
TN += (n_score < thresh).float().sum()
FP += (n_score > thresh).float().sum()
FN += (p_score < thresh).float().sum()
data["Loss"] = data["Loss"] / len(data_loader)
data["Extra_Loss"] = data["Extra_Loss"] / len(data_loader)
data["Acc"] = (TP + TN ) / (TP + TN + FP + FN)
data["precision"] = TP / (TP + FP + 1e-5)
data["recall"] = TP / (TP + FN)
data["F1"] = 2 * data["precision"] * data["recall"] / (data["precision"] + data["recall"])
data["IOU"] = IOU / len(data_loader)
data["coverage"] = coverage / len(data_loader)
if not self.support_only:
p_score = torch.cat(all_scores_pos).reshape(-1)
n_score = torch.cat(all_scores_neg).reshape(-1)
data["ROC"] = roc_auc_score(torch.cat([torch.ones(p_score.shape), torch.zeros(n_score.shape)]) , torch.cat([p_score, n_score]).cpu() )
data["AVG_ROC"] = np.mean(all_rocs)
print("Eval Epoch: {}\tLoss: {:.4f} Loss extra: {:.4f} AVG_ROC: {:.4f} IOU: {:.4f} ROC: {:.4f} coverage: {:.4f}".format(epoch, data['Loss'], data["Extra_Loss"], data["AVG_ROC"], data["IOU"], data["ROC"], data["coverage"]))
if istest:
wandb.log({"test_auc": data['ROC'], "epoch": epoch})
wandb.log({"test_avg_auc": data['AVG_ROC'], "epoch": epoch})
else:
wandb.log({"valid_auc": data['ROC'], "epoch": epoch})
wandb.log({"valid_avg_auc": data['AVG_ROC'], "epoch": epoch})
self.html_f.write("<p>Eval Epoch: {}\tLoss: {:.4f} Loss extra: {:.4f} Acc: {:.4f} IOU: {:.4f} ROC: {:.4f} AVG ROC: {:.4f} </p>".format(epoch, data['Loss'], data["Extra_Loss"], data["Acc"], data["IOU"], data["ROC"], data["AVG_ROC"]))
for i in range(5):
self.html_f.write(f"<img src=\"eval_batch_{i}_{epoch}.jpg\" width=\"1500\" height=\"150\" />")
self.html_f.write(f"<img src=\"eval_neg_batch_{i}_{epoch}.jpg\" width=\"1500\" height=\"150\" />")
self.html_f.flush()
return data
def eval(self, istest=False, epoch=None, trial = None, best_params = None):
self.metaR.eval()
# clear sharing rel_q
self.metaR.rel_q_sharing = dict()
if istest:
data_loader = self.test_data_loader_ranktail
else:
data_loader = self.dev_data_loader_ranktail
# initial return data of validation
data = {'MRR': 0, 'Hits@1': 0, 'Hits@5': 0, 'Hits@10': 0}
ranks = []
ranks_x = []
t = 0
temp = dict()
# convert to next_on_eval version
for batch_idx, batch in tqdm(enumerate(data_loader), total = len(data_loader)):
# sample all the eval tasks
eval_task, curr_rel = batch
# at the end of sample tasks, a symbol 'EOT' will return
loss, extra_loss, p_score, n_score, edge_mask, edge_mask_neg = self.do_one_step(eval_task, iseval=False, is_eval_loss = True , curr_rel=curr_rel, trial = trial, best_params = best_params)
x = torch.cat([n_score.reshape(len(curr_rel), -1), p_score.reshape(-1, 1)], 1)
for idx in range(x.shape[0]):
t += 1
self.rank_predict(data, x[idx], ranks)
ranks_x.append(x[idx])
# print current temp data dynamically
for k in data.keys():
temp[k] = data[k] / t
sys.stdout.write("{}\tMRR: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
t, temp['MRR'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1']))
sys.stdout.write("{}\tLoss: {:.4f} Loss extra: {:.4f}".format(t, loss.item(), extra_loss.item()))
sys.stdout.flush()
# print overall evaluation result and return it
for k in data.keys():
data[k] = round(data[k] / t, 3)
print("{}\tMRR: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
t, data['MRR'], data['Hits@10'], data['Hits@5'], data['Hits@1']))
if istest:
prefix='test'
else:
prefix = 'valid'
wandb.log({
"%s-mrr"%prefix: data['MRR'],
"%s-h1"%prefix: data['Hits@1'],
"%s-h5"%prefix: data['Hits@5'],
"%s-h10"%prefix: data['Hits@10'],
"epoch": epoch
})
return data