-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrubix.py
395 lines (342 loc) · 14.2 KB
/
rubix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
""" A minimalstic Rubik's cube solver.
We model a rubix cube as a discrete object in 3-dimensional Euclidean space,
centered at the origin (0, 0, 0).
Each *cubelet* has coordinates (x, y, z) in {-1, 0, 1}^3.
Each *move* is a 90 degree hyperplane rotation, with the hyperplane given
by a standard unit vector or its opposite.
"""
import numpy as np
import heapq
import signal
import math
import random
import functools
from collections import deque
from datetime import datetime
from dataclasses import dataclass, field
from typing import Any
# Whether or not to use randomization during search.
RANDOMIZE_SEARCH = True
# Remember start up time for stats.
STARTUP_TIME = datetime.now()
# Redefine print to include timestamps.
_print = print
def print(*args, **kw):
_print("[%s]" % (datetime.now().strftime('%H:%M:%S')), *args, **kw)
# Returns the 1-norm of a vector.
def norm1(v): return sum(abs(x) for x in v)
# Returns a 2-dimensional matrix as a tuple.
def tupled(np_mat): return tuple(tuple(int(x) for x in row) for row in np_mat)
# We are interested in x, y, z coordinates ranging over {-1, 0, 1}.
crange = [-1, 0, 1]
vectors = tuple((x,y,z) for x in crange for y in crange for z in crange)
unit_vectors = [v for v in vectors if norm1(v) == 1]
# A cube is encoded as a finite map from cubelets to 3-by-3 rotation matrices
# `r`, where each cubelet is encoded as the 3D vector `c` that indicates the
# position of the cubelet in the solved cube.
# The cubelets current position is given by the matrix-vector product `c*r`.
solved_cube = tuple((c, tupled(np.identity(3))) for c in vectors if any(c))
NUM_CUBELETS = len(solved_cube)
# A move is a clockwise or counterclockwise 90 degree rotation of the
# slice pointed at by a unit vector.
moves = [(v, direction) for v in unit_vectors for direction in [-1, 1]]
# Each color is encoded by the unit vector corresponding to the direction that
# faces of that color point to in a solved cube.
color_names = {
(+1, 0, 0): "GREEN", # front
(0, +1, 0): "RED", # right
(0, 0, +1): "WHITE", # top
(-1, 0, 0): "BLUE", # back
(0, -1, 0): "ORANGE", # left
(0, 0, -1): "YELLOW", # bottom
}
assert all(v in color_names for v in unit_vectors)
def describe_cubelet_type(cubelet):
if norm1(cubelet) == 0: return "hidden"
if norm1(cubelet) == 1: return "center"
if norm1(cubelet) == 2: return "edge"
if norm1(cubelet) == 3: return "corner"
assert False
def describe_position(vector):
x, y, z = vector
descriptions = []
descriptions += ["top"] if z == 1 else ["bottom"] if z == -1 else []
descriptions += ["right"] if y == 1 else ["left"] if y == -1 else []
descriptions += ["front"] if x == 1 else ["back"] if x == -1 else []
assert descriptions
return "-".join(descriptions)
def describe_config(cubelet, rotation):
colors = np.diag(cubelet)
color_positions = rotation @ colors
return ", ".join(sorted(
describe_position(pos) + ": " + color_names[tuple(color)]
for color, pos in zip(colors.T, color_positions.T)
if any(color)
))
def position(cubelet, rotation): return tuple(np.matmul(rotation, cubelet))
def describe_cubelet(cubelet, rotation):
return "%s %s: %s" % (
describe_cubelet_type(cubelet),
describe_position(position(cubelet, rotation)),
describe_config(cubelet, rotation),
)
def describe_cube(cube):
return "\n".join(sorted(describe_cubelet(*c) for c in cube))
def describe_move(move):
v, direction = move
return "%s rotation of %s slice" % (
"clockwise" if direction == 1 else "counterclockwise",
describe_position(v),
)
@functools.cache
def rotation_matrix(move):
v, direction = move
# The rotational axis is the dimension into which `v` is pointing.
fixed_dim = next(i for i in range(3) if v[i])
# The rotation takes place in the other two dimensions.
r1, r2 = (i for i in range(3) if i != fixed_dim)
M = np.zeros([3, 3])
M[fixed_dim, fixed_dim] = 1
# The 90 degree rotation matrix [[0, 1], [-1,0]], adjusted by direction.
# https://en.wikipedia.org/wiki/Rotation_matrix#Common_rotations
M[r1, r2], M[r2, r1] = direction, -direction
return M
@functools.cache
def apply_move_to_cubelet_rotation(move, cubelet, rotation):
v, direction = move
move_applies = np.dot(v, position(cubelet, rotation)) > 0
return tupled(rotation_matrix(move) @ rotation) if move_applies else rotation
def apply_move_to_cube(move, cube):
return tuple(
(cubelet, apply_move_to_cubelet_rotation(move, cubelet, rotation))
for cubelet, rotation in cube
)
def shuffle(cube, iterations=100_000, seed=42):
if seed: random.seed(seed)
for _ in range(iterations):
move = moves[random.randrange(len(moves))]
cube = apply_move_to_cube(move, cube)
return cube
def run_tests():
# Check that every move is a permutation with cyle length 4.
for move in moves:
cubes = [solved_cube]
for _ in range(3): cubes.append(apply_move_to_cube(move, cubes[-1]))
assert len(set(cubes)) == 4
assert apply_move_to_cube(move, cubes[-1]) == cubes[0]
run_tests()
# print(describe_cube(shuffle(solved_cube)))
# print("rotation_matrix: ", rotation_matrix.cache_info())
# print("apply_move_to_cubelet_rotation: ", apply_move_to_cubelet_rotation.cache_info())
@dataclass(order=True, frozen=True)
class PrioritizedItem:
item: Any = field(compare=False)
priority: int
def astar(start, is_goal, get_moves, apply_move, heuristic = lambda _: 0,
random_weight=0):
if is_goal(start): return (start, ())
frontier = [PrioritizedItem(start, 0)]
came_from = {}
cost_so_far = { start : 0 }
def reconstruct_solution(dst):
path = []
current = dst
while current in came_from:
src = came_from[current]
move = next(m for m in get_moves(src) if apply_move(m, src) == current)
path.append(move)
current = src
return (dst, tuple(reversed(path)))
while frontier:
src = heapq.heappop(frontier).item
for move in get_moves(src):
dst, cost = apply_move(move, src), cost_so_far[src] + 1
if dst in cost_so_far and cost_so_far[dst] <= cost: continue
cost_so_far[dst], came_from[dst] = cost, src
if is_goal(dst): return reconstruct_solution(dst)
h_weight = random.gauss(1, random_weight) if RANDOMIZE_SEARCH else 1
priority = cost + h_weight * heuristic(dst)
heapq.heappush(frontier, PrioritizedItem(dst, priority))
return None
@functools.cache
def is_cubelet_solved(cubelet, rotation):
colors = np.diag(cubelet)
color_positions = rotation @ colors
return np.array_equal(colors, color_positions)
def is_cube_solved(cube): return all(is_cubelet_solved(c, r) for c, r in cube)
def num_solved_with_criterion(cube, criterion):
return sum(is_cubelet_solved(c, r) for c,r in cube if criterion(c))
@functools.cache
def min_moves_to_solved(cubelet, rotation):
def is_dst(rotation): return is_cubelet_solved(cubelet, rotation)
def get_moves(_): return moves
def apply_move(m, x): return tupled(rotation_matrix(m) @ x)
_, path = astar(rotation, is_dst, get_moves, apply_move)
return len(path)
def top_layer_heuristic(cube):
p, n = 0.5, 8
d = sum(min_moves_to_solved(c, r)**p for c, r in cube if c[2] == 1) ** (1/p)
return d/n
def middle_layer_heuristic(cube):
p, n = 0.5, 4
d = sum(min_moves_to_solved(c, r)**p for c, r in cube if c[2] >= 0) ** (1/p)
return d/n
def bottom_layer_edge_heuristic(cube):
p, n = 0.5, 3
d = sum(min_moves_to_solved(c, r)**p for c, r in cube
if not (c[2] == -1 and norm1(c) == 3)) ** (1/p)
return d/n
def bottom_layer_corner_heuristic(cube):
p, n1, n2, n3 = 0.5, 5, 3, 8
d1 = sum(min_moves_to_solved(c, r)**p for c, r in cube if c[2] == 1) ** (1/p)
d2 = sum(min_moves_to_solved(c, r)**p for c, r in cube if c[2] == 0) ** (1/p)
d3 = sum(min_moves_to_solved(c, r)**p for c, r in cube if c[2] == -1) ** (1/p)
return d1/n1 + d2/n2 + d3/n3
def is_top_edge(cubelet): return cubelet[2] == 1 and norm1(cubelet) == 2
def is_top_cubelet(cubelet): return cubelet[2] == 1
def is_top_or_middle_cubelet(cubelet): return cubelet[2] >= 0
def with_restarts(timeout, f, *args, **kwargs):
def raise_timeout(signum, frame): raise TimeoutError()
signal.signal(signal.SIGALRM, raise_timeout)
signal.alarm(timeout)
while True:
try:
result = f(*args, **kwargs)
signal.alarm(0)
return result
except TimeoutError:
print("timed out after %d seconds; restarting" % timeout)
timeout = min(2 * timeout, 300)
signal.alarm(timeout)
def solve_top_and_middle_layer(cube, report_progress_callback):
solution_moves = ()
for num_solved in range(17):
report_progress_callback(cube)
print("solving cubelet #%d" % (num_solved + 1))
def is_goal(cube): return all([
num_solved_with_criterion(cube, is_top_edge) >= min(4, num_solved + 1),
num_solved_with_criterion(cube, is_top_cubelet) >= min(9, num_solved + 1),
num_solved_with_criterion(cube, is_top_or_middle_cubelet) >= min(17, num_solved + 1),
])
def get_moves(_): return moves
heuristic = top_layer_heuristic if num_solved < 9 else middle_layer_heuristic
cube, next_moves = astar(cube, is_goal, get_moves, apply_move_to_cube,
heuristic, random_weight=0.25)
print("-> found solution with %d moves" % len(next_moves))
solution_moves += next_moves
return (cube, solution_moves)
def is_bottom_edge(cubelet): return cubelet[2] == -1 and norm1(cubelet) == 2
def is_bottom_corner(cubelet): return cubelet[2] == -1 and norm1(cubelet) == 3
def is_bottom_cubelet(cubelet): return cubelet[2] == -1
def has_orange_bottom(cubelet, rotation):
return cubelet[2] == -1 and all((rotation @ np.array([0, 0, -1])) == [0, 0, -1])
def is_in_right_place(c, r):
return position(c, r) == c
def num_bottom_edges_positioned(cube):
return sum(is_bottom_edge(c) and has_orange_bottom(c, r) for c, r in cube)
def num_bottom_corners_positioned(cube):
return sum(is_bottom_corner(c) and is_in_right_place(c, r) for c, r in cube)
def solve_bottom_layer_edges(cube, report_progress_callback):
solution_moves = ()
for i in range(8):
report_progress_callback(cube)
print("solving bottom cross #%d" % (i + 1))
def is_goal(cube): return all([
num_solved_with_criterion(cube, is_top_or_middle_cubelet) == 17,
num_bottom_edges_positioned(cube) >= min(4, i + 1),
num_solved_with_criterion(cube, is_bottom_edge) >= min(4, i-3),
])
def get_moves(_): return moves
heuristic = bottom_layer_edge_heuristic
try:
cube, next_moves = astar(cube, is_goal, get_moves, apply_move_to_cube,
heuristic)
except KeyboardInterrupt:
return (cube, solution_moves)
print("-> found solution with %d moves" % len(next_moves))
solution_moves += next_moves
return (cube, solution_moves)
def solve_bottom_layer_corners(cube, report_progress_callback):
solution_moves = ()
for i in range(4):
report_progress_callback(cube)
print("positioning bottom corners #%d" % (i + 1))
def is_goal(cube): return all([
num_solved_with_criterion(cube, is_top_or_middle_cubelet) == 17,
num_solved_with_criterion(cube, is_bottom_edge) == 4,
num_bottom_corners_positioned(cube) >= min(4, i + 1),
])
def get_moves(_): return moves
heuristic = bottom_layer_corner_heuristic
try:
cube, next_moves = astar(cube, is_goal, get_moves, apply_move_to_cube,
heuristic, random_weight=0.3)
except KeyboardInterrupt:
return (cube, solution_moves)
print("-> found solution with %d moves" % len(next_moves))
solution_moves += next_moves
return (cube, solution_moves)
def bottom_left_front_corner(cube):
return next((c,r) for c,r in cube if position(c, r) == (1, -1, -1))
def solve_endgame(cube, report_progress_callback):
solution = []
move_by_name = { describe_move(move) : move for move in moves }
def apply_move(m, cunbe):
move = move_by_name[m]
solution.append(move)
return apply_move_to_cube(move, cube)
routine = 2 * [
"counterclockwise rotation of left slice",
"counterclockwise rotation of top slice",
"clockwise rotation of left slice",
"clockwise rotation of top slice",
]
def is_bottom_left_front_corner_ok(cube):
c, r = bottom_left_front_corner(cube)
move = move_by_name["clockwise rotation of bottom slice"]
for i in range(4):
if is_cubelet_solved(c, r): return True
r = apply_move_to_cubelet_rotation(move, c, r)
return False
for _ in range(4):
report_progress_callback(cube)
while not is_bottom_left_front_corner_ok(cube):
for move in routine: cube = apply_move(move, cube)
cube = apply_move("clockwise rotation of bottom slice", cube)
while not is_cube_solved(cube):
cube = apply_move("clockwise rotation of bottom slice", cube)
return (cube, tuple(solution))
def solve(cube, report_progress_callback=lambda cube: None):
cube, solution1 = with_restarts(20, solve_top_and_middle_layer, cube, report_progress_callback)
print(50 * "-")
cube, solution2 = solve_bottom_layer_edges(cube, report_progress_callback)
print(50 * "-")
cube, solution3 = with_restarts(30, solve_bottom_layer_corners, cube, report_progress_callback)
print(50 * "-")
cube, solution4 = solve_endgame(cube, report_progress_callback)
solution = solution1 + solution2 + solution3 + solution4
print("Solved cube in %d moves. Final cube:" % len(solution))
# print(describe_cube(cube))
print("is_cube_solved: ", is_cube_solved(cube))
print("cube == solved_cube: ", cube == solved_cube)
return solution
def print_stats():
secs_elapsed = (datetime.now() - STARTUP_TIME).total_seconds()
cache_info = apply_move_to_cubelet_rotation.cache_info()
moves = (cache_info.hits + cache_info.misses) / len(solved_cube)
print("- time elapsed: %.1f sec" % secs_elapsed)
print("- moves simulated: %d (%.0f moves/sec) " % (
moves,
moves / secs_elapsed
))
cache_info = min_moves_to_solved.cache_info()
print("- min moves to solved calculations: ", cache_info.hits + cache_info.misses)
tough_seeds_for_top_layer = [17, 33]
tough_seeds_for_middle_layer = [0, 3, 4, 7, 8]
tough_seeds_for_bottom_layer = [6]
if __name__ == "__main__":
for seed in range(100):
print("== SEED:", seed, "==========================================")
random_cube = shuffle(solved_cube, iterations=100_000, seed=seed)
solve(random_cube)
print_stats()