-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathforbiden5gd.py
57 lines (54 loc) · 1.95 KB
/
forbiden5gd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 17 13:22:07 2019
@author: ShaharGroup-fyu
"""
import matplotlib.pyplot as plt
import mdtraj as md
import os, sys
import statistics as st
import numpy as np
import pandas as pd
def computeforbiden(sigma):
t = md.load('__traj.xtc',top='__START.pdb')
topology=t.topology
r=topology.select_atom_indices(selection='alpha')
j=0
k=0
while j<5500:
for i in r:
valueadjustment=1
standard=t.xyz[j,r[0],:]
standardvector=t.xyz[j,r[1],:]
a=t.xyz[j,i,:]
if i>r[1]:
valuea=np.sqrt((standardvector[0]-standard[0])*(standardvector[0]-standard[0])+(standardvector[1]-standard[1])*(standardvector[1]-standard[1])+(standardvector[2]-standard[2])*(standardvector[2]-standard[2]))
valueb=np.sqrt((a[0]-standard[0])*(a[0]-standard[0])+(a[1]-standard[1])*(a[1]-standard[1])+(a[2]-standard[2])*(a[2]-standard[2]))
value=(standardvector[0]-standard[0])*(a[0]-standard[0])+(standardvector[1]-standard[1])*(a[1]-standard[1])+(standardvector[2]-standard[2])*(a[2]-standard[2])
valueadjustment=value/valuea/valueb
if valueadjustment<sigma:
k+=1
break
j+=1
return(k)
arrange=0
col=0
pwd=os.getcwd()
print(np.cos(np.pi/6))
k = ['S_-3.0','S_-2.5','S_-2.0','S_-1.5','S_-1.0','S_-0.5','S_0.0','S_0.5','S_1.0','S_1.5','S_2.0','S_2.5','S_3.0']
q =[-3.0,-2.5,-2.0,-1.5,-1.0,-0.5,0.0,0.5,1.0,1.5,2.0,2.5,3.0]
l = ['BB']
color = ['#800080']
tit=['Backbone']
for h in l:
forbiden=[]
for p in k:
string = str(pwd)+'/'+h+'/'+p
os.chdir(string)
temp=computeforbiden(0.05)
forbiden.append(temp)
print(temp)
os.chdir(pwd)
dataframe = pd.DataFrame({'MTFE':q,'forbidden':forbiden})
pcsv=h+'forbid5.csv'
dataframe.to_csv(pcsv,index=False,sep=',')