-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcodetect_obj.py
585 lines (468 loc) · 32 KB
/
codetect_obj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
from __future__ import print_function
import sys
sys.dont_write_bytecode = True
import tensorflow as tf
import numpy as np
import os
import Utils as utils
from Utils import EMAof
import datetime
import FileQueue as dataset
from six.moves import xrange
import downscaleImages
import classDefinitions
from classDefinitions import *
from distanceFunctions import *
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_string("logs_dir", "logs/", "path to logs directory")
tf.flags.DEFINE_string("data_dir", "RoboCupAtWork_Preporcessed/train/", "path to dataset")
tf.flags.DEFINE_string("valid_dir", "RoboCupAtWork_Preporcessed/eval/", "path to evaluation dataset")
tf.flags.DEFINE_float("learning_rate", "1e-5", "Learning rate for Adam Optimizer")
tf.flags.DEFINE_bool('logProgress', "False", "evaluates every 1000 steps or so on the entire eval set, writes the accurracy into a file")
tf.flags.DEFINE_string('mode', "train", "Mode train/ test/ visualize")
tf.flags.DEFINE_float("holdout1", "0.0", "first object not to use during training")
tf.flags.DEFINE_float("holdout2", "1.0", "second object not to use during training")
MAX_ITERATION = int(50001)
image_size = downscaleImages.image_size
num_color_channels = downscaleImages.num_color_channels
NUM_CLASSES_AND_NOTHING = downscaleImages.NUM_CLASSES_AND_NOTHING
learning_rate_placeholder = tf.placeholder(tf.float32, [], name='learning_rate')
MID_LAYER_NAME = 'norm8'
def vgg_net(image, keep_prob, useSelectionFilter):
layers = []
#TODO add more dropout layers
#TODO original authors also used max pooling instead of avg
#image is 192*256*4 = 196608 (~200k)
#layer 1 uses 192*256*64 = 3145728 (3.14m)
layers.extend(['conv1_1', 'relu1_1', 'conv1_2', 'relu1_2'])
if(useSelectionFilter is not None):
layers.extend(['sele1'])
layers.extend(['pool1'])
#layer 2 uses 96*128*128 = 1572864 (1.57m)
layers.extend(['conv2_1', 'relu2_1', 'conv2_2', 'relu2_2'])
if(useSelectionFilter is not None):
layers.extend(['sele2'])
layers.extend(['pool2'])
#layer 3 uses 48*64*256 = 786432 (~800k)
layers.extend(['conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4'])
if(useSelectionFilter is not None):
layers.extend(['sele3'])
layers.extend(['pool3'])
#layer 4 uses 24*32*512 = 393216 (~300k)
layers.extend(['conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3', 'conv4_4', 'relu4_4'])
if(useSelectionFilter is not None):
layers.extend(['sele4'])
layers.extend(['pool4'])
layers.extend(['drop4'])
#layer 5 uses 6*8*1024 = 49152 = (50k)
layers.extend(['conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'conv5_4', 'relu5_4'])
if(useSelectionFilter is not None):
layers.extend(['sele5'])
layers.extend(['pool5'])
layers.extend(['drop5'])
#layer 6 uses 6*8*2048 = 196608 (200k) # sudden incline - weird?
#layers.extend(['conv6_1', 'relu6_1'])
layers.extend(['conv6_1', 'relu6_1', 'conv6_2', 'relu6_2']) # one more conv/relu?
if(useSelectionFilter is not None):
layers.extend(['sele6'])
layers.extend(['drop6'])
layers.extend(['pool6']) # pool should come before dropout, but we need this layer later with this particular size for deconvolution, yet we still want to have some dropout...
#layer 7 scales down to 1*1*4096 = 4096
layers.extend(['conp7_0', 'relu7_0'])
layers.extend(['conv7_1', 'relu7_1', 'drop7_1'])
layers.extend(['conv8_1', 'relu8_1', 'conv8_2', 'relu8_2', 'conv8_3', 'relu8_3', 'drop8_1', 'norm8']) #'full8_2', 'relu8_2',
#if(useSelectionFilter is not None): # all of the deconvolution is only required for real network
#layers.extend(['decp0'])
#layers.extend(['decv1']) # scales up to 6*8*1024 = 49152 (50k) # is still 4k
layers.extend(['decv2']) # scales up to 12*16*512 = 98304 (100k)
layers.extend(['decv3']) # scales up to 24*32*256 = 196608 (200k)
layers.extend(['decv4']) # scales up to 192*256*2 = 98304 (100k) (but technically, only half of the data/one layer is used.)
kernels = {'conv1_1':[3, 3, 4, 64],
'conv1_2':[3, 3, 64, 64],
'conv2_1':[3, 3, 64, 128],
'conv2_2':[3, 3, 128, 128],
'conv3_1':[3, 3, 128, 256],
'conv3_2':[3, 3, 256, 256],
'conv3_3':[3, 3, 256, 256],
'conv3_4':[3, 3, 256, 256],
'conv4_1':[3, 3, 256, 512],
'conv4_2':[3, 3, 512, 512],
'conv4_3':[3, 3, 512, 512],
'conv4_4':[3, 3, 512, 1024],
'conv5_1':[3, 3, 1024, 1024],
'conv5_2':[3, 3, 1024, 1024],
'conv5_3':[3, 3, 1024, 1024],
'conv5_4':[3, 3, 1024, 1024],
'conv6_1':[3, 3, 1024, 2048],
'conv6_2':[3, 3, 2048, 2048],
'conp7_0':[3, 4, 2048, 4096],
'conv7_1':[1, 1, 4096, 4096],
'full8_1':[4096, 4544], # 128 reached 88/89 quickly, 64 too, but slower I think
'conv8_1':[1, 1, 4096, 4544],
'conv8_2':[1, 1, 4544, 4544],
'conv8_3':[1, 1, 4544, 4544],
'decp0':[3, 4, 2048, 4096],
'decv1':[4, 4, 1024, 2048],
'decv2':[4, 4, 1024, 2048],
'decv3':[4, 4, 256, 1024],
'decv4':[16, 16, OUTPUT_LAYERS, 256]}
deconvolution_conf = {'decp0':((3,4), None, 'pool6', [BATCH_SIZE, 3, 4, 2048], True),
'decv1':((2,2), None, 'pool5', [BATCH_SIZE, 6, 8, 1024], True),
'decv2':((2,2), 'drop6', 'pool4', [BATCH_SIZE, 12, 16, 1024], True),
'decv3':((2,2), None, 'pool3', [BATCH_SIZE, 24, 32, 256], True),
'decv4':((8,8), None, 'output',[BATCH_SIZE, 192, 256, OUTPUT_LAYERS], False)}
selectorWeightsIdx = {'sele1':(0, 64),
'sele2':(64, 192),
'sele3':(192, 448),
#'sele4':(448, 960),
#'sele5':(960, 1984),
#'sele6':(1984, 4032)}
'sele4':(448, 1472),
'sele5':(1472, 2496),
'sele6':(2496, 4544)}
network = {'input':image}
current = network['input']
#print("00", "input")
#print(network['input'])
for i, name in enumerate(layers):
#print(i, name)
kind = name[:4]
if kind in ['conv', 'conp']:
padding = 'VALID' if kind == 'conp' else 'SAME'
numOutputFilters = kernels[name][3]
kernel = utils.weight_variable(kernels[name], name=name+"_weights")
biases = utils.bias_variable([numOutputFilters], name=name+"_biases")
current = utils.conv2d_basic(current, kernel, biases, pad=padding)
elif kind == 'relu':
current = utils.leaky_relu(current, name=name)
elif kind == 'avpl':
current = utils.avg_pool_2x2(current)
elif kind == 'pool':
current = utils.max_pool_2x2(current)
elif kind == 'drop':
current = tf.nn.dropout(current, keep_prob=keep_prob)
elif kind == 'full':
kernelshape = kernels[name]
weights = utils.weight_variable(kernelshape, name=name+"_weights")
biases = utils.bias_variable([kernelshape[1]], name=name+"_biases")
reshaped = tf.reshape(current, [BATCH_SIZE, -1])
current = tf.matmul(reshaped, weights) + biases
current = tf.reshape(current, [BATCH_SIZE,1,1,-1]) # shaped back
elif kind == 'sele': #only refined network gets selector weights
lower, upper = selectorWeightsIdx[name];
selectorWeights = useSelectionFilter[:,:,:,lower:upper]
current = selectorWeights * current
elif kind == 'norm':
factor = tf.cast(tf.shape(current)[3], tf.float32)
current = tf.nn.l2_normalize(current, dim=-1, name=name+"_normalized")*factor
elif kind in ['decv', 'decp']:
padding = 'VALID' if kind == 'decp' else 'SAME'
stride, inputLayerName, mergeLayer, target_shape, shouldFuse = deconvolution_conf[name]
kernelshape = kernels[name]
inputLayer = network[inputLayerName] if inputLayerName is not None else current
kernel = utils.weight_variable(kernelshape, name=name+"_weights")
biases = utils.bias_variable([kernelshape[2]], name=name+"_biases")
current = utils.conv2d_transpose_strided(inputLayer, kernel, biases, output_shape=target_shape, stride=stride, pad=padding)
if shouldFuse:
current = tf.add(current, network[mergeLayer], name=name+"_fuse")
#print(current)
network[name] = current
network['lastLayer'] = current
return network
def inference(image, keyimage, keep_prob):
mean_pixel = tf.constant([120.4281724, 121.60578141, 118.14762266, 172.40523575])
#measured from 11951 of the 31713 input files: 120.4281724 121.60578141 118.14762266 172.40523575
processed_image = utils.process_image(image, mean_pixel)
processed_keyimage = utils.process_image(keyimage, mean_pixel)
with tf.variable_scope("inference"):
with tf.variable_scope("extraction") as scope:
keyExtractorNet = vgg_net(processed_keyimage, keep_prob, None)
key_network_output = keyExtractorNet[MID_LAYER_NAME]
allObjsEnabled = tf.nn.l2_normalize(tf.ones_like(key_network_output), dim=-1)
#with tf.variable_scope("application") as scope:
scope.reuse_variables()
refined_image_net = vgg_net(processed_image, keep_prob, key_network_output)
refined_image_net1 = vgg_net(processed_keyimage, keep_prob, key_network_output)
refined_image_net2 = vgg_net(processed_image, keep_prob, allObjsEnabled) # TODO with this, only IoU will work! (and not even that, yet)
network_output = refined_image_net['lastLayer']
network_output_allObj = refined_image_net2['lastLayer']
network_output_keyObj = refined_image_net2['lastLayer']
return utils.normalizeWeightsExt(network_output), utils.normalizeWeightsExt(network_output_allObj), utils.normalizeWeightsExt(network_output_keyObj), key_network_output
def allLossValues(markedFoundObject, labels, coords, allObjectsMarked, keyObjectmarked, keylabels, keycoords, classificationLayer, objectTypes, keyObjectTypes):
meanPickupError, meanDistanceError = distanceLoss(markedFoundObject, coords)
meanKeyPickupError, meanKeyDistanceError = distanceLoss(keyObjectmarked, keycoords)
scaledMeanDistanceError = meanDistanceError / 100 # very rough scaling to 0..1
scaledMeanKeyDistanceError = meanKeyDistanceError # / 100 # very rough scaling to 0..1
meanIoULoss = ioULoss(markedFoundObject, labels, keyObjectTypes) # every object type from keycoords will be selected in coords
meanAllImgsIoULoss = ioULoss(allObjectsMarked, labels, objectTypes) # all objs will be selected
meanKeyImageIouLoss = ioULoss(keyObjectmarked, keylabels, keyObjectTypes) # here, only keycoord would be selected
meanVectorSpreadError = vectorSpreadError(classificationLayer, keyObjectTypes)
meanBinarizationError = binarizePredictionVector(classificationLayer)
scaledMeanDistanceErrorAverage = EMAof(scaledMeanDistanceError)
meanIoULossAverage = EMAof(meanIoULoss)
scaledMeanKeyDistanceErrorAverage = EMAof(scaledMeanKeyDistanceError)
meanAllImgsIoULossAverage = EMAof(meanAllImgsIoULoss)
meanKeyImageIouLossAverage = EMAof(meanKeyImageIouLoss)
meanVectorSpreadErrorAverage = EMAof(meanVectorSpreadError)
meanBinarizationErrorAverage = EMAof(meanBinarizationError)
scaledMeanDistanceErrorVariance = EMAof(tf.square(scaledMeanDistanceErrorAverage-scaledMeanDistanceError))
meanIoULossVariance = EMAof(tf.square(meanIoULossAverage-meanIoULoss))
scaledMeanKeyDistanceErrorVariance = EMAof(tf.square(scaledMeanKeyDistanceErrorAverage-scaledMeanKeyDistanceError))
meanAllImgsIoULossVariance = EMAof(tf.square(meanAllImgsIoULossAverage-meanAllImgsIoULoss))
meanKeyImageIouLossVariance = EMAof(tf.square(meanKeyImageIouLossAverage-meanKeyImageIouLoss))
meanVectorSpreadErrorVariance = EMAof(tf.square(meanVectorSpreadErrorAverage-meanVectorSpreadError))
meanBinarizationErrorVariance = EMAof(tf.square(meanBinarizationErrorAverage-meanBinarizationError))
# first row is for debug and plotting, second row is actually used as error
return [ meanDistanceError, meanIoULoss, meanKeyDistanceError, meanAllImgsIoULoss, meanKeyImageIouLoss, meanVectorSpreadError, meanBinarizationError],\
[scaledMeanDistanceError, meanIoULoss, scaledMeanKeyDistanceError, meanAllImgsIoULoss, meanKeyImageIouLoss, meanVectorSpreadError, meanBinarizationError],\
[scaledMeanDistanceErrorAverage, meanIoULossAverage, scaledMeanKeyDistanceErrorAverage, meanAllImgsIoULossAverage, meanKeyImageIouLossAverage, meanVectorSpreadErrorAverage, meanBinarizationErrorAverage],\
[scaledMeanDistanceErrorVariance, meanIoULossVariance, scaledMeanKeyDistanceErrorVariance, meanAllImgsIoULossVariance, meanKeyImageIouLossVariance, meanVectorSpreadErrorVariance, meanBinarizationErrorVariance]
def KGCWeight(taskVariance):
epsilon = tf.constant(1e-8)
factor = 1 / ((2*taskVariance) + epsilon)
return factor
def KGCWeighted(taskLoss, taskVariance):
epsilon = tf.constant(1e-4)
#KCG div by avg
#taskVariance = taskVariance/(taskLoss + epsilon) # this scales the variance by the average, assuming a higher variance for higher loss values (different func!)
factor = KGCWeight(taskVariance)
regularization = tf.log1p(taskVariance)
return (factor * taskLoss) + regularization
def loss_function_selector(logits, labels, coords, logits2, logits3, keylabels, keycoords, classificationLayer, objectTypes, keyObjectTypes, iteration):
_, [scaledMeanDistanceError, meanIoULoss, scaledMeanKeyDistanceError, meanAllImgsIoULoss, meanKeyImageIouLoss, meanVectorSpreadError, meanBinarizationError],\
[scaledMeanDistanceErrorAverage, meanIoULossAverage, scaledMeanKeyDistanceErrorAverage, meanAllImgsIoULossAverage, meanKeyImageIouLossAverage, meanVectorSpreadErrorAverage, meanBinarizationErrorAverage],\
[scaledMeanDistanceErrorVariance, meanIoULossVariance, scaledMeanKeyDistanceErrorVariance, meanAllImgsIoULossVariance, meanKeyImageIouLossVariance, meanVectorSpreadErrorVariance, meanBinarizationErrorVariance] = allLossValues(logits, labels, coords, logits2, logits3, keylabels, keycoords, classificationLayer, objectTypes, keyObjectTypes)
kgcIoU = KGCWeighted(meanIoULoss, meanIoULossVariance)
kgcAllImgs = KGCWeighted(meanAllImgsIoULoss, meanAllImgsIoULossVariance)
kgcKeyImage = KGCWeighted(meanKeyImageIouLoss, meanKeyImageIouLossVariance)
kgcVectorSpread = KGCWeighted(meanVectorSpreadError, meanVectorSpreadErrorVariance)
kgcBinarization = KGCWeighted(meanBinarizationError, meanBinarizationErrorVariance)
inputToAuxnet = tf.stack([[meanIoULoss, meanAllImgsIoULoss, meanKeyImageIouLoss, meanVectorSpreadError, meanIoULossAverage, meanAllImgsIoULossAverage, meanKeyImageIouLossAverage, meanVectorSpreadErrorAverage, meanIoULossVariance, meanAllImgsIoULossVariance, meanKeyImageIouLossVariance, meanVectorSpreadErrorVariance]])
AUXNET_weights1 = utils.weight_variable([12, 64], name="AUXNET_weights1")
AUXNET_bias1 = utils.bias_variable([64], name="AUXNET_bias1")
AUXNET_fullyConn1 = utils.leaky_relu(tf.matmul(inputToAuxnet, AUXNET_weights1) + AUXNET_bias1, name="AUXNET_fullyConn1")
AUXNET_weights2 = utils.weight_variable([64, 4], name="AUXNET_weights2")
AUXNET_bias2 = utils.bias_variable([4], name="AUXNET_bias2")
AUXNET_fullyConn2 = utils.leaky_relu(tf.matmul(AUXNET_fullyConn1, AUXNET_weights2) + AUXNET_bias2, name="AUXNET_fullyConn2")
squeezed = tf.abs(tf.squeeze(AUXNET_fullyConn2))
squeezed += 1e-6 # just to avoid div by 0
factors = squeezed / tf.sqrt(tf.reduce_sum(tf.square(squeezed)))
#factors = tf.Print(factors, [factors], message="factors", summarize=4)
newFactors = factors
#meanVectorSpreadError = tf.Print(meanVectorSpreadError, [meanVectorSpreadError], message="meanVectorSpreadError", summarize=1)
newmeanIoULoss = (meanIoULoss / (newFactors[0] + 1e-6)) + tf.log1p(newFactors[0])
newmeanAllImgsIoULoss = (meanAllImgsIoULoss / (newFactors[1] + 1e-6)) + tf.log1p(newFactors[1])
newmeanKeyImageIouLoss = (meanKeyImageIouLoss / (newFactors[2] + 1e-6)) + tf.log1p(newFactors[2])
newmeanVectorSpreadError = (meanVectorSpreadError / (newFactors[3] + 1e-6)) + tf.log1p(newFactors[3])
#return [[newmeanIoULoss + newmeanAllImgsIoULoss + newmeanKeyImageIouLoss + newmeanVectorSpreadError, tf.constant(1.0)]]
#return [[kgcIoU+kgcAllImgs+kgcKeyImage, tf.constant(1.0)]] #+kgcVectorSpread,
#return [[(0.4*meanIoULoss) + (0.2*meanAllImgsIoULoss) + (0.2*meanKeyImageIouLoss) + (0.01*meanVectorSpreadError), tf.constant(1.0)]] # (0.01*meanVectorSpreadError) + (0.1*meanBinarizationError)
return [[meanIoULoss, tf.constant(1.0)]]
#return [[meanAllImgsIoULoss, tf.constant(1.0)]]
def train(losses_val, var_list):
returns = []
for loss_val, loss_weight in losses_val:
optimizer = tf.train.AdamOptimizer(learning_rate_placeholder * loss_weight)
grads = optimizer.compute_gradients(loss_val, var_list=var_list)
returns.append(optimizer.apply_gradients(grads))
return returns
def main(argv=None):
HOLDOUT_OBJECT_DURING_TRAINING = [float(FLAGS.holdout1), float(FLAGS.holdout2)]
########################### PLACEHOLDSERS ############################
keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
iteration = tf.placeholder(tf.int64, name="iteration")
image = tf.placeholder(tf.float32, shape=[BATCH_SIZE, image_size[1], image_size[0], num_color_channels], name="input_image")
keyimage = tf.placeholder(tf.float32, shape=[BATCH_SIZE, image_size[1], image_size[0], num_color_channels], name="key_image")
objectTypes = tf.placeholder(tf.float32, shape=[BATCH_SIZE, NUM_CLASSES_AND_NOTHING], name="objectTypes")
keyObjectTypes = tf.placeholder(tf.float32, shape=[BATCH_SIZE, NUM_CLASSES_AND_NOTHING], name="keyObjectTypes")
annotation = tf.placeholder(tf.int32, shape=[BATCH_SIZE, image_size[1], image_size[0], 1], name="annotation")
keyannotation = tf.placeholder(tf.int32, shape=[BATCH_SIZE, image_size[1], image_size[0], 1], name="keyannotation")
labels = tf.squeeze(annotation, squeeze_dims=[3])
keylabels = tf.squeeze(keyannotation, squeeze_dims=[3])
coords = tf.placeholder(tf.float32, shape=[BATCH_SIZE, 4], name="coordinates")
keycoords = tf.placeholder(tf.float32, shape=[BATCH_SIZE, 4], name="keycoordinates")
#################
norm_networkOutput, norm_networkOutput2, norm_networkOutput3, classificationLayer = inference(image, keyimage, keep_probability)
allErrorMeasures = distanceLoss(norm_networkOutput, coords, evalMode=True)
pickupError, distanceError = distanceLoss(norm_networkOutput, coords)
allLosses, _, _, _ = allLossValues(norm_networkOutput, labels, coords, norm_networkOutput2, norm_networkOutput3, keylabels, keycoords, classificationLayer, objectTypes, keyObjectTypes)
losses = loss_function_selector(norm_networkOutput, labels, coords, norm_networkOutput2, norm_networkOutput3, keylabels, keycoords, classificationLayer, objectTypes, keyObjectTypes, iteration)
realIouValue = realIoU(norm_networkOutput, labels, coords)
trainable_vars = tf.trainable_variables()
train_op = train(losses, trainable_vars)
print("Reading dataset dimensions...")
train_records, valid_records = utils.read_dataset(FLAGS.data_dir, FLAGS.valid_dir, HOLDOUT_OBJECT_DURING_TRAINING)
print(str(len(train_records)) + " records for training")
print(str(len(valid_records)) + " records for validation")
if len(valid_records) == 0 or len(train_records) == 0:
print("insufficient training or validation data")
raise SystemExit
print("Loading entire dataset to memory...")
if FLAGS.mode == 'train':
train_dataset_reader = dataset.FileQueue(train_records)
validation_dataset_reader = dataset.FileQueue(valid_records)
sess = tf.Session()
print("Setting up Saver...")
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
print("Model restored...")
if FLAGS.mode == "train":
printLossEvery = 10
printEvalLossEvery = 200
saveModelEvery = 500
runCompleteEvalEvery = 500 if FLAGS.logProgress else MAX_ITERATION
if(FLAGS.logProgress):
accFile = open('progressWhileTraining.csv', 'w')
accFile.write("step,nix,nix,iouBatch,distanceBatch,nix,nix,classificationAccuracy,correctlyClassifiedDistanceCm,iouTrainEval,iouRealEval,distancePix,distanceCm\n")
for itr in xrange(1, MAX_ITERATION):
(train_images, train_annotations, train_coords, train_keyimages, train_keyannotations, train_keycoords, train_objectTypes, train_keyObjectTypes, _) = train_dataset_reader.next_batch(BATCH_SIZE)
feed_dict = {image: train_images, keyimage:train_keyimages, annotation: train_annotations, keyannotation:train_keyannotations, keycoords:train_keycoords, objectTypes:train_objectTypes, keyObjectTypes:train_keyObjectTypes, keep_probability: 0.85, coords: train_coords, iteration: int(itr), learning_rate_placeholder: FLAGS.learning_rate}
sess.run(train_op, feed_dict=feed_dict)
if itr % printLossEvery == 0:
train_losses, train_error_mean = sess.run([losses, distanceError], feed_dict=feed_dict)
if(np.any(np.isnan(np.array(train_losses)))):
print("Stopping - NaN loss.")
raise SystemExit
utils.printLossValues(str(itr), train_losses)
if itr % printEvalLossEvery == 0 and not FLAGS.logProgress:
(valid_images, valid_annotations, valid_coords, valid_keyimages, valid_keyannotations, valid_keycoords, valid_objectTypes, valid_keyObjectTypes, _) = validation_dataset_reader.next_batch(BATCH_SIZE)
feed_dict = {image: valid_images, keyimage:valid_keyimages, annotation: valid_annotations, keyannotation:valid_keyannotations, keycoords:valid_keycoords, objectTypes:valid_objectTypes, keyObjectTypes:valid_keyObjectTypes, coords: valid_coords, keep_probability: 1.0, iteration: int(itr), learning_rate_placeholder: FLAGS.learning_rate}
valid_losses, valid_error_mean = sess.run([losses, distanceError], feed_dict=feed_dict)
utils.printLossValues(str(datetime.datetime.now()), valid_losses)
if itr % saveModelEvery == 0:
saver.save(sess, FLAGS.logs_dir + "model.ckpt", itr)
if itr % runCompleteEvalEvery == 0 and FLAGS.logProgress:
#get the losses from the current batch
trainDistance, trainIoU, trainKeyDistance, trainAllImgsIoU, trainKeyIoU, trainVectorSpreadError, trainBinarizationError = sess.run(allLosses, feed_dict=feed_dict)
#now, run eval on the complete eval set:
countElements = 0
sumDistance = 0.0
sumCorrectlyClassifiedDistance = 0.0
sumPixDistance = 0.0
sumevalIoU = 0.0
sumrealEvalIoU = 0.0
sumevalIoUKey = 0.0
sumevalIoUAllImgs = 0.0
numberCorrectlyClassified = 0
while validation_dataset_reader.epochs_completed < 1:
(valid_images, valid_annotations, valid_coords, valid_keyimages, valid_keyannotations, valid_keycoords, valid_objectTypes, valid_keyObjectTypes, valid_allCoords) = validation_dataset_reader.next_batch(BATCH_SIZE)
feed_dict = {image: valid_images, keyimage:valid_keyimages, annotation: valid_annotations, keyannotation:valid_keyannotations, keycoords:valid_keycoords, objectTypes:valid_objectTypes, keyObjectTypes:valid_keyObjectTypes, coords: valid_coords, keep_probability: 1.0, iteration: int(itr), learning_rate_placeholder: FLAGS.learning_rate}
(evalDistance, evalIoU, evalKeyDistance, evalAllImgsIoU, evalKeyIoU, evalVectorSpreadError, evalBinarizationError), (normalizedHeatmapsTensor, predictedPointsTensor, tempSelectedError, error_mean),realEvalIoU = sess.run([allLosses, allErrorMeasures, realIouValue], feed_dict=feed_dict)
for itr2 in range(BATCH_SIZE):
countElements +=1
#add up directly obtained error measures:
sumPixDistance += evalDistance
sumevalIoU += evalIoU
sumrealEvalIoU += realEvalIoU
sumevalIoUKey += evalKeyIoU
sumevalIoUAllImgs += evalAllImgsIoU
#calculate average distance:
labelCoords = valid_coords[itr2][1:3]
labelAvgDepth = valid_coords[itr2][3]
classifiedCoords = predictedPointsTensor[itr2]
difference = labelCoords-classifiedCoords
pixDistance = np.linalg.norm(difference)
distance = utils.pixelDistInCm(pixDistance, labelAvgDepth)
sumDistance += distance
classifiedCoords = predictedPointsTensor[itr2]
labelActualObjectType = valid_coords[itr2][0]
classifiedAs = 1337.42
closestDistance = 10000005.3141
distanceOfClosestObject = 42.69
for thisCoordAndStuff in valid_allCoords[itr2]:
thisCoord = thisCoordAndStuff[1:3]
thisObjType = thisCoordAndStuff[0]
thisDist = np.linalg.norm(thisCoord-classifiedCoords)
if(thisDist < closestDistance):
closestDistance = thisDist
classifiedAs = thisObjType
distanceOfClosestObject = thisCoordAndStuff[3]
numberCorrectlyClassified += 1 if classifiedAs == labelActualObjectType else 0
sumCorrectlyClassifiedDistance += utils.pixelDistInCm(closestDistance, distanceOfClosestObject)
validation_dataset_reader.epochs_completed = 0
step = str(itr)
iouBatch = str(trainIoU)
distanceBatch= str(trainDistance)
if countElements == 0:
countElements = 1
classificationAccuracy = str(float(numberCorrectlyClassified)/countElements)
iouTrainEval = str(sumevalIoU / countElements)
iouRealEval = str(sumrealEvalIoU / countElements)
iouTrainEvalKey = str( sumevalIoUKey / countElements)
iouTrainEvalAllImgs = str(sumevalIoUAllImgs / countElements)
distancePix = str(sumPixDistance / countElements)
distanceCm = str(sumDistance / countElements)
correctlyClassifiedDistance = str(sumCorrectlyClassifiedDistance / countElements)
accFile.write(step+','+iouTrainEvalKey+','+iouTrainEvalAllImgs+','+iouBatch+','+distanceBatch+','+str(trainVectorSpreadError)+','+'0'+','+classificationAccuracy+','+correctlyClassifiedDistance+','+iouTrainEval+','+iouRealEval+','+distancePix+','+distanceCm+'\n')
accFile.flush()
print("Complete Validation Set avg distance:"+distanceCm)
elif FLAGS.mode == "visualize":
(valid_images, valid_annotations, valid_coords, valid_keyimages, valid_keyannotations, valid_keycoords, valid_objectTypes, valid_keyObjectTypes, valid_allCoords) = validation_dataset_reader.get_random_batch(BATCH_SIZE)
pred, predk, classLayer, ( normalizedHeatmapsTensor, predictedPointsTensor, tempSelectedError, error_mean) = sess.run([norm_networkOutput, norm_networkOutput2, classificationLayer, allErrorMeasures], feed_dict={image: valid_images, keyimage:valid_keyimages, annotation: valid_annotations, keyannotation:valid_keyannotations, keycoords:valid_keycoords, objectTypes:valid_objectTypes, keyObjectTypes:valid_keyObjectTypes, coords: valid_coords, keep_probability: 1.0})
valid_annotations = np.squeeze(valid_annotations, axis=3)
for itr in range(BATCH_SIZE):
utils.save_image(valid_images[itr][:, :,0:3].astype(np.uint8), FLAGS.logs_dir, name="input_" + str(itr))
valid_annots = (valid_annotations[itr] / float(NUM_CLASSES_AND_NOTHING))* 255.0
utils.save_image(valid_annots.astype(np.uint8), FLAGS.logs_dir, name="goal_" + str(itr))
utils.save_image(valid_keyimages[itr][:, :,0:3].astype(np.uint8), FLAGS.logs_dir, name="keyinput_" + str(itr))
leslice1 = pred[itr,:, :,0] * 255.0
leslice2 = pred[itr,:, :,1] * 255.0
#utils.save_image(leslice1.astype(np.uint8), FLAGS.logs_dir, name="normLayer0_" + str(itr))
utils.save_image(leslice2.astype(np.uint8), FLAGS.logs_dir, name="normLayer1_" + str(itr))
leslice1 = predk[itr,:, :,0] * 255.0
leslice2 = predk[itr,:, :,1] * 255.0
#utils.save_image(leslice1.astype(np.uint8), FLAGS.logs_dir, name="keynormLayer0_" + str(itr))
utils.save_image(leslice2.astype(np.uint8), FLAGS.logs_dir, name="keynormLayer1_" + str(itr))
print(predictedPointsTensor[itr])
print(tempSelectedError[itr])
print("Saved image: %d" % itr)
elif FLAGS.mode == "evaluate":
number = 0
evaluationFile = open('distances.csv', 'w')
classificationFile = open('classifications.csv', 'w')
sumElements = 0
sumDistance = 0
numberCorrectlyClassified = 0
while validation_dataset_reader.epochs_completed < 1:
(valid_images, valid_annotations, valid_coords, valid_keyimages, valid_keyannotations, valid_keycoords, valid_objectTypes, valid_keyObjectTypes, valid_allCoords) = validation_dataset_reader.next_batch(BATCH_SIZE)
feed_dict = {image: valid_images, keyimage:valid_keyimages, annotation: valid_annotations, keyannotation:valid_keyannotations, keycoords:valid_keycoords, objectTypes:valid_objectTypes, keyObjectTypes:valid_keyObjectTypes, coords: valid_coords, keep_probability: 1.0}
pred, (normalizedHeatmapsTensor, predictedPointsTensor, tempSelectedError, error_mean) = sess.run([norm_networkOutput, allErrorMeasures], feed_dict=feed_dict)
for itr in range(BATCH_SIZE):
classifiedCoords = predictedPointsTensor[itr]
labelActualObjectType = valid_coords[itr][0]
#print("new object")
classifiedAs = 1337.42
closestDistance = 10000005.3141
for thisCoordAndStuff in valid_allCoords[itr]:
thisCoord = thisCoordAndStuff[1:3]
thisObjType = thisCoordAndStuff[0]
thisDist = np.linalg.norm(thisCoord-classifiedCoords)
#print ("testing distance "+str(thisDist))
if(thisDist < closestDistance):
closestDistance = thisDist
classifiedAs = thisObjType
#print("maybe it's a "+str(thisObjType))
numberCorrectlyClassified += 1 if classifiedAs == labelActualObjectType else 0
labelCoords = valid_coords[itr][1:3]
labelAvgDepth = valid_coords[itr][3]
difference = labelCoords-classifiedCoords
distance = np.linalg.norm(difference)
distance = utils.pixelDistInCm(distance, labelAvgDepth)
sumDistance += distance
sumElements +=1
line = str(distance)+"\n"
evaluationFile.write(line)
otherLine = str(int(labelActualObjectType))+','+str(int(classifiedAs))+'\n'
classificationFile.write(otherLine)
#leslice = pred[itr,:, :,0]
#lenormheatmap = (normalizedHeatmapsTensor[itr,:, :]) * 255.0
#utils.save_image(leslice.astype(np.uint8), FLAGS.logs_dir, name="pred_" + str(number))
#utils.save_image(lenormheatmap.astype(np.uint8), FLAGS.logs_dir, name="nhm_" + str(number))
number += 1
print("from "+str(sumElements)+" elements, average distance was:"+str(float(sumDistance)/sumElements))
print("also, from "+str(sumElements)+" elements, average classification accurracy was:"+str(float(numberCorrectlyClassified)/sumElements))
if __name__ == "__main__":
tf.app.run()