-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDESeq2_condition.r
237 lines (203 loc) · 10.9 KB
/
DESeq2_condition.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
library(gplots)
library(RColorBrewer)
library(DESeq2)
library(readr)
library(tximport)
library(fdrtool)
options(bitmapType='cairo') #work around for X11 missing on cluster
##############################################################
##############################################################
##############################################################
#functions here
rld_pca <- function (rld, intgroup = "condition", ntop = 500, colors=NULL, legendpos="bottomleft", main="PCA Biplot", textcx=1, ...) {
require(genefilter)
require(calibrate)
require(RColorBrewer)
rv = rowVars(assay(rld))
select = order(rv, decreasing = TRUE)[seq_len(min(ntop, length(rv)))]
pca = prcomp(t(assay(rld)[select, ]))
fac = factor(apply(as.data.frame(colData(rld)[, intgroup, drop = FALSE]), 1, paste, collapse = " : "))
if (is.null(colors)) {
if (nlevels(fac) >= 3) {
colors = brewer.pal(nlevels(fac), "Paired")
} else {
colors = c("black", "red")
}
}
pc1var <- round(summary(pca)$importance[2,1]*100, digits=1)
pc2var <- round(summary(pca)$importance[2,2]*100, digits=1)
pc1lab <- paste0("PC1 (",as.character(pc1var),"%)")
pc2lab <- paste0("PC1 (",as.character(pc2var),"%)")
plot(PC2~PC1, data=as.data.frame(pca$x), bg=colors[fac], pch=21, xlab=pc1lab, ylab=pc2lab, main=main, ...)
with(as.data.frame(pca$x), textxy(PC1, PC2, labs=rownames(as.data.frame(pca$x)), cex=textcx))
legend(legendpos, legend=levels(fac), col=colors, pch=20)
# rldyplot(PC2 ~ PC1, groups = fac, data = as.data.frame(pca$rld),
# pch = 16, cerld = 2, aspect = "iso", col = colours, main = draw.key(key = list(rect = list(col = colours),
# terldt = list(levels(fac)), rep = FALSE)))
}
volcanoplot <- function (res, lfcthresh=2, sigthresh=0.1, main="Volcano Plot", legendpos="bottomright", labelsig=TRUE, textcx=1, ...) {
with(res, plot(log2FoldChange, -log10(pvalue), pch=20, main=main, ...))
with(subset(res, padj<sigthresh ), points(log2FoldChange, -log10(pvalue), pch=20, col="red", ...))
with(subset(res, abs(log2FoldChange)>lfcthresh), points(log2FoldChange, -log10(pvalue), pch=20, col="orange", ...))
with(subset(res, padj<sigthresh & abs(log2FoldChange)>lfcthresh), points(log2FoldChange, -log10(pvalue), pch=20, col="green", ...))
if (labelsig) {
require(calibrate)
with(subset(res, padj<sigthresh & abs(log2FoldChange)>lfcthresh), textxy(log2FoldChange, -log10(pvalue), labs=Gene, cex=textcx, ...))
}
legend(legendpos, xjust=1, yjust=1, legend=c(paste("FDR<",sigthresh,sep=""), paste("|LogFC|>",lfcthresh,sep=""), "both"), pch=20, col=c("red","orange","green"))
}
#Must be run with resdata, not res! This is because of the lab=Gene
maplot <- function (res, thresh=0.1, labelsig=TRUE, textcx=1, ...) {
with(res, plot(baseMean, log2FoldChange, pch=20, cex=.5, log="x", ...))
with(subset(res, padj<thresh), points(baseMean, log2FoldChange, col="red", pch=20, cex=1.5))
if (labelsig) {
require(calibrate)
with(subset(res, padj<thresh), textxy(baseMean, log2FoldChange, labs=Gene, cex=textcx, col=2))
}
}
entrezid <- function( resdata ) {
require(EnsDb.Hsapiens.v79)
a = resdata$Gene #the column to iterate over will be different if I'm using res vs resdata
tmp=gsub("\\..*","",a)
tmp <- as.character(tmp)
txdb <- EnsDb.Hsapiens.v79
df <- AnnotationDbi::select(txdb, keys = tmp, keytype = "GENEID", columns = "ENTREZID")
df2 <- AnnotationDbi::select(txdb, keys = tmp, keytype = "GENEID", columns = "SYMBOL")
ENTREZID <- c()
SYMBOL <- c()
counter1 <- 0
for (i in tmp) {
counter1 <- counter1 + 1
j <- match(i,df$GENEID)
ENTREZID <- c(ENTREZID, toString(df[j,][2]))
SYMBOL <- c(SYMBOL, toString(df2[j,][2]))}
resdata$ENTREZID <- ENTREZID
resdata$SYMBOL <- SYMBOL
resdata
}
##############################################################
##############################################################
##############################################################
####locate the directory containing the files####pri
#dir <- "/Users/SLancaster/Desktop/Projects/Fiber/Data/rsem_genes_results_all_trimmed"
dir <- "/srv/gsfs0/projects/snyder/slancast/fiber/rnaseq/rsem_genes_results_all_trimmed"
###create vector of filenames from table
samples <- read.table(file.path(dir, "samples.txt"), header = TRUE)
##import transcript-level estimates from RSEM files
files <- file.path(dir, samples$run, paste0(samples$run, ".genes.results"))
names(files) <- paste0("sample", 1:nrow(samples))
###
#tx2gene <- read.csv(file.path(dir, "tx2gene.csv"))
#head(tx2gene)
###
txi <- tximport(files, type = "rsem")
names(txi)
###remove zero length transcripts
txi$length[txi$length == 0] <- 1
###create dataframe with proper rownames
sampleTable <- data.frame(condition = factor(samples$fiber))
sampleTable[,2] <- data.frame(week = factor(samples$week))
rownames(sampleTable) <- colnames(txi$counts)
###construct a DESeqDataSet from the txi object and sample info in samples.txt file
dds <- DESeqDataSetFromTximport(txi, sampleTable, ~ condition + week)
###prefilter low count genes
dds <- dds[ rowMeans(counts(dds)) > 0.2, ]
###set factor levels
#factor_levels <- unique(sampleTable$condition)
#dds$condition <- factor(dds$condition, levels = factor_levels)
#This loop is slightly clunky, but it works well enough for now. Next time perhaps I will
#create a loop for every factor. That should clean things up nicely.
#The first one will be for "condition" i.e. fiber type
for (i in colnames(sampleTable)[1]) {
print(i)
factor_levels <- unique(sampleTable[[i]])
print("factor levels:")
print(factor_levels)
ddsDESeq <- dds
ddsDESeq[[i]] <- factor(ddsDESeq[[i]], levels = factor_levels)
for (j in unique(sampleTable[[i]])) {
print(j)
ddsDESeq[[i]] <- relevel(ddsDESeq[[i]], ref = j)
###Differential analysis
ddsDESeq <- DESeq(ddsDESeq) #betaPrior=TRUE makes the output almost the same as for version 1.14 on the cluster
resultsNames(ddsDESeq)
for (h in resultsNames(ddsDESeq)[2:4]){
print(h)
res <- results(ddsDESeq, contrast = list(h), altHypothesis = "greaterAbs")
res.fixed <- fdrtool(res$stat, statistic = "normal") #adjusting for batch effects (https://support.bioconductor.org/p/99685/; http://www-huber.embl.de/users/klaus/Teaching/DESeq2Predoc2014.html)
res.fixed <- data.frame(res.fixed)
padjusted <- p.adjust(res.fixed$pval, method = "BH", n = nrow(res.fixed))
res$pvalue <- res.fixed$pval
res$padj <- padjusted
table(res$padj<0.1)
# Get differential expression results
res <- res[order(res$padj), ]
head(res)
resLFC <- lfcShrink(ddsDESeq, coef=2, res=res)
# res <- subset(res, baseMean > 0.2) #thowing out the extrememly low read count samples.
resdata <- merge(as.data.frame(res), as.data.frame(counts(ddsDESeq, normalized=TRUE)), by="row.names", sort=FALSE)
names(resdata)[1] <- "Gene"
## Write results
resdata <- entrezid(resdata)
write.csv(resdata, file=paste("/srv/gsfs0/projects/snyder/slancast/fiber/rnaseq/RNAseq_results/",h,"-diffexpr-results.csv",sep=""))
###Visualization and data collection
# Plot dispersions
png(paste("/srv/gsfs0/projects/snyder/slancast/fiber/rnaseq/RNAseq_results/",h,"qc-dispersions.png",sep=""), 1000, 1000, pointsize=20)
plotDispEsts(ddsDESeq, main="Dispersion plot")
dev.off()
# Regularized log transformation for clustering/heatmaps, etc
print("rld")
rld <- rlogTransformation(ddsDESeq, blind=FALSE)
vsd <- varianceStabilizingTransformation(ddsDESeq, blind=FALSE) #blind=false because dds has already been run estimating dispersion values
png(paste("/srv/gsfs0/projects/snyder/slancast/fiber/rnaseq/RNAseq_results/",h,"rld_hist.png",sep=""))
hist(assay(rld))
dev.off()
print("rld finsihed")
# Colors for plots below
## Ugly:
## (mycols <- 1:length(unique(condition)))
## Use RColorBrewer, better looking
(mycols <- brewer.pal(8, "Dark2")[1:length(unique(factor_levels))])
# Sample distance heatmap
sampleDists <- as.matrix(dist(t(assay(rld))))
png(paste("/srv/gsfs0/projects/snyder/slancast/fiber/rnaseq/RNAseq_results/",h,"qc-heatmap-samples.png",sep=""), w=1000, h=1000, pointsize=20)
heatmap.2(as.matrix(sampleDists), key=F, trace="none",
col=colorpanel(100, "green", "red"),
ColSideColors=mycols[ddsDESeq[[i]]], RowSideColors=mycols[ddsDESeq[[i]]], #
margin=c(10, 10), main="Sample Distance Matrix")
dev.off()
# Principal components analysis
## Could do with built-in DESeq2 function:
## DESeq2::plotPCA(rld, intgroup="condition")
## I like this better:
png(paste("/srv/gsfs0/projects/snyder/slancast/fiber/rnaseq/RNAseq_results/",h,"qc-pca.png",sep=""), 1000, 1000, pointsize=20)
rld_pca(rld, colors=mycols, intgroup="condition")
dev.off()
png(paste("/srv/gsfs0/projects/snyder/slancast/fiber/rnaseq/RNAseq_results/",h,"qc-vsd-pca.png",sep=""), 1000, 1000, pointsize=20)
rld_pca(vsd, colors=mycols, intgroup="condition")
dev.off()
## Examine plot of p-values
png(paste("/srv/gsfs0/projects/snyder/slancast/fiber/rnaseq/RNAseq_results/",h,"res-pvalue.png",sep=""), 1000, 1000, pointsize=20)
hist(res$pvalue, breaks=250, col="grey")
dev.off()
## Examine independent filtering
#attr(res, "filterThreshold")
#plot(attr(res,"filterNumRej"), type="b", xlab="quantiles of baseMean", ylab="number of rejections")
## MA plot
## Could do with built-in DESeq2 function:
## DESeq2::plotMA(dds, ylim=c(-1,1), cex=1)
## Use this instead though:
png(paste("/srv/gsfs0/projects/snyder/slancast/fiber/rnaseq/RNAseq_results/",h,"built-in-maplot-res.png",sep=""), 1500, 1000, pointsize=20)
plotMA(res, ylim=c(-1,1), cex=1)
dev.off()
png(paste("/srv/gsfs0/projects/snyder/slancast/fiber/rnaseq/RNAseq_results/",h,"resLFC-maplot.png",sep=""), 1500, 1000, pointsize=20)
plotMA(resLFC, ylim=c(-1,1), cex=1)
dev.off()
png(paste("/srv/gsfs0/projects/snyder/slancast/fiber/rnaseq/RNAseq_results/",h,"diffexpr-maplot-resdata.png",sep=""), 1500, 1000, pointsize=20)
maplot(resdata, ylim = c(-1,1), main="MA Plot")
dev.off()
## Volcano plot with "significant" genes labeled
png(paste("/srv/gsfs0/projects/snyder/slancast/fiber/rnaseq/RNAseq_results/",h,"diffexpr-volcanoplot.png",sep=""), 1200, 1000, pointsize=20)
volcanoplot(resdata, sigthresh=0.1, textcx=.8, xlim=c(-5, 5))
dev.off()
}}}