-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathglMatrix.cpp
318 lines (253 loc) · 10.3 KB
/
glMatrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/*-----------------------------------------------------------------------------
glMatrix.cpp
2006 Shamus Young
-------------------------------------------------------------------------------
Functions useful for manipulating the Matrix struct
-----------------------------------------------------------------------------*/
#define M(e,x,y) (e.elements[x][y])
/*** Order type constants, constructors, extractors ***/
/* There are 24 possible conventions, designated by: */
/* o EulAxI = axis used initially */
/* o EulPar = parity of axis permutation */
/* o EulRep = repetition of initial axis as last */
/* o EulFrm = frame from which axes are taken */
/* Axes I,J,K will be a permutation of X,Y,Z. */
/* Axis H will be either I or K, depending on EulRep. */
/* Frame S takes axes from initial static frame. */
/* If ord = (AxI=X, Par=Even, Rep=No, Frm=S), then */
/* {a,b,c,ord} means Rz(c)Ry(b)Rx(a), where Rz(c)v */
/* rotates v around Z by c radians. */
#define EulFrmS 0
#define EulFrmR 1
#define EulFrm(ord) ((unsigned)(ord)&1)
#define EulRepNo 0
#define EulRepYes 1
#define EulRep(ord) (((unsigned)(ord)>>1)&1)
#define EulParEven 0
#define EulParOdd 1
#define EulPar(ord) (((unsigned)(ord)>>2)&1)
#define EulSafe "\000\001\002\000"
#define EulNext "\001\002\000\001"
#define EulAxI(ord) ((int)(EulSafe[(((unsigned)(ord)>>3)&3)]))
#define EulAxJ(ord) ((int)(EulNext[EulAxI(ord)+(EulPar(ord)==EulParOdd)]))
#define EulAxK(ord) ((int)(EulNext[EulAxI(ord)+(EulPar(ord)!=EulParOdd)]))
#define EulAxH(ord) ((EulRep(ord)==EulRepNo)?EulAxK(ord):EulAxI(ord))
/* EulGetOrd unpacks all useful information about order simultaneously. */
#define EulGetOrd(ord,i,j,k,h,n,s,f) {unsigned o=ord;f=o&1;o>>=1;s=o&1;o>>=1;\
n=o&1;o>>=1;i=EulSafe[o&3];j=EulNext[i+n];k=EulNext[i+1-n];h=s?k:i;}
/* EulOrd creates an order value between 0 and 23 from 4-tuple choices. */
#define EulOrd(i,p,r,f) (((((((i)<<1)+(p))<<1)+(r))<<1)+(f))
/* Static axes */
#define EulOrdXYZs EulOrd(X,EulParEven,EulRepNo,EulFrmS)
#define EulOrdXYXs EulOrd(X,EulParEven,EulRepYes,EulFrmS)
#define EulOrdXZYs EulOrd(X,EulParOdd,EulRepNo,EulFrmS)
#define EulOrdXZXs EulOrd(X,EulParOdd,EulRepYes,EulFrmS)
#define EulOrdYZXs EulOrd(Y,EulParEven,EulRepNo,EulFrmS)
#define EulOrdYZYs EulOrd(Y,EulParEven,EulRepYes,EulFrmS)
#define EulOrdYXZs EulOrd(Y,EulParOdd,EulRepNo,EulFrmS)
#define EulOrdYXYs EulOrd(Y,EulParOdd,EulRepYes,EulFrmS)
#define EulOrdZXYs EulOrd(Z,EulParEven,EulRepNo,EulFrmS)
#define EulOrdZXZs EulOrd(Z,EulParEven,EulRepYes,EulFrmS)
#define EulOrdZYXs EulOrd(Z,EulParOdd,EulRepNo,EulFrmS)
#define EulOrdZYZs EulOrd(Z,EulParOdd,EulRepYes,EulFrmS)
/* Rotating axes */
#define EulOrdZYXr EulOrd(X,EulParEven,EulRepNo,EulFrmR)
#define EulOrdXYXr EulOrd(X,EulParEven,EulRepYes,EulFrmR)
#define EulOrdYZXr EulOrd(X,EulParOdd,EulRepNo,EulFrmR)
#define EulOrdXZXr EulOrd(X,EulParOdd,EulRepYes,EulFrmR)
#define EulOrdXZYr EulOrd(Y,EulParEven,EulRepNo,EulFrmR)
#define EulOrdYZYr EulOrd(Y,EulParEven,EulRepYes,EulFrmR)
#define EulOrdZXYr EulOrd(Y,EulParOdd,EulRepNo,EulFrmR)
#define EulOrdYXYr EulOrd(Y,EulParOdd,EulRepYes,EulFrmR)
#define EulOrdYXZr EulOrd(Z,EulParEven,EulRepNo,EulFrmR)
#define EulOrdZXZr EulOrd(Z,EulParEven,EulRepYes,EulFrmR)
#define EulOrdXYZr EulOrd(Z,EulParOdd,EulRepNo,EulFrmR)
#define EulOrdZYZr EulOrd(Z,EulParOdd,EulRepYes,EulFrmR)
#include <math.h>
#include <float.h>
#include "macro.h"
#include "glTypes.h"
static float identity[4][4] =
{
{1.0f, 0.0f, 0.0f, 0.0f},
{0.0f, 1.0f, 0.0f, 0.0f},
{0.0f, 0.0f, 1.0f, 0.0f},
{0.0f, 0.0f, 0.0f, 1.0f},
};
/*-----------------------------------------------------------------------------
-----------------------------------------------------------------------------*/
void* glMatrixCreate (void)
{
GLmatrix* m;
int x;
int y;
m = new GLmatrix;
for (x = 0; x < 4; x++) {
for (y = 0; y < 4; y++) {
m -> elements[x][y] = identity[x][y];
}
}
return (void*)m;
}
/*-----------------------------------------------------------------------------
-----------------------------------------------------------------------------*/
GLmatrix glMatrixIdentity (void)
{
GLmatrix m;
int x;
int y;
for (x = 0; x < 4; x++) {
for (y = 0; y < 4; y++) {
M(m, x, y) = identity[x][y];
}
}
return m;
}
/*-----------------------------------------------------------------------------
-----------------------------------------------------------------------------*/
void glMatrixElementsSet (GLmatrix* m, float* in)
{
m -> elements[0][0] = in[0];
m -> elements[0][1] = in[1];
m -> elements[0][2] = in[2];
m -> elements[0][3] = in[3];
m -> elements[1][0] = in[4];
m -> elements[1][1] = in[5];
m -> elements[1][2] = in[6];
m -> elements[1][3] = in[7];
m -> elements[2][0] = in[8];
m -> elements[2][1] = in[9];
m -> elements[2][2] = in[10];
m -> elements[2][3] = in[11];
m -> elements[3][0] = in[12];
m -> elements[3][1] = in[13];
m -> elements[3][2] = in[14];
m -> elements[3][3] = in[15];
}
/*---------------------------------------------------------------------------
A matrix multiplication (dot product) of two 4x4 matrices.
---------------------------------------------------------------------------*/
GLmatrix glMatrixMultiply (GLmatrix a, GLmatrix b)
{
GLmatrix result;
M(result, 0,0) = M(a, 0,0) * M(b, 0, 0) + M(a, 1,0) * M(b, 0, 1) + M(a, 2,0) * M(b, 0, 2);
M(result, 1,0) = M(a, 0,0) * M(b, 1, 0) + M(a, 1,0) * M(b, 1, 1) + M(a, 2,0) * M(b, 1, 2);
M(result, 2,0) = M(a, 0,0) * M(b, 2, 0) + M(a, 1,0) * M(b, 2, 1) + M(a, 2,0) * M(b, 2, 2);
M(result, 3,0) = M(a, 0,0) * M(b, 3, 0) + M(a, 1,0) * M(b, 3, 1) + M(a, 2,0) * M(b, 3, 2) + M(a, 3,0);
M(result, 0,1) = M(a, 0,1) * M(b, 0, 0) + M(a, 1,1) * M(b, 0, 1) + M(a, 2,1) * M(b, 0, 2);
M(result, 1,1) = M(a, 0,1) * M(b, 1, 0) + M(a, 1,1) * M(b, 1, 1) + M(a, 2,1) * M(b, 1, 2);
M(result, 2,1) = M(a, 0,1) * M(b, 2, 0) + M(a, 1,1) * M(b, 2, 1) + M(a, 2,1) * M(b, 2, 2);
M(result, 3,1) = M(a, 0,1) * M(b, 3, 0) + M(a, 1,1) * M(b, 3, 1) + M(a, 2,1) * M(b, 3, 2) + M(a, 3,1);
M(result, 0,2) = M(a, 0,2) * M(b, 0, 0) + M(a, 1,2) * M(b, 0, 1) + M(a, 2,2) * M(b, 0, 2);
M(result, 1,2) = M(a, 0,2) * M(b, 1, 0) + M(a, 1,2) * M(b, 1, 1) + M(a, 2,2) * M(b, 1, 2);
M(result, 2,2) = M(a, 0,2) * M(b, 2, 0) + M(a, 1,2) * M(b, 2, 1) + M(a, 2,2) * M(b, 2, 2);
M(result, 3,2) = M(a, 0,2) * M(b, 3, 0) + M(a, 1,2) * M(b, 3, 1) + M(a, 2,2) * M(b, 3, 2) + M(a, 3,2);
return result;
}
/*-----------------------------------------------------------------------------
-----------------------------------------------------------------------------*/
GLvector glMatrixTransformPoint (GLmatrix m, GLvector in)
{
GLvector out;
out.x = M(m,0,0) * in.x + M(m,1,0) * in.y + M(m,2,0) * in.z + M(m,3,0);
out.y = M(m,0,1) * in.x + M(m,1,1) * in.y + M(m,2,1) * in.z + M(m,3,1);
out.z = M(m,0,2) * in.x + M(m,1,2) * in.y + M(m,2,2) * in.z + M(m,3,2);
return out;
}
/*-----------------------------------------------------------------------------
-----------------------------------------------------------------------------*/
GLmatrix glMatrixTranslate (GLmatrix m, GLvector in)
{
GLvector old;
old.x = M(m,3,0);
old.y = M(m,3,1);
old.z = M(m,3,2);
M(m, 3, 0) = 0.0f;
M(m, 3, 1) = 0.0f;
M(m, 3, 2) = 0.0f;
in = glMatrixTransformPoint (m, in);
M(m, 3, 0) = old.x;
M(m, 3, 1) = old.y;
M(m, 3, 2) = old.z;
M(m,3,0) += in.x;
M(m,3,1) += in.y;
M(m,3,2) += in.z;
return m;
}
/*-----------------------------------------------------------------------------
-----------------------------------------------------------------------------*/
GLmatrix glMatrixRotate (GLmatrix m, float theta, float x, float y, float z)
{
GLmatrix r;
float length;
float s, c, t;
GLvector in;
theta *= DEGREES_TO_RADIANS;
r = glMatrixIdentity ();
length = (float)sqrt (x * x + y * y + z * z);
if (length < 0.00001f)
return m;
x /= length;
y /= length;
z /= length;
s = (float)sin (theta);
c = (float)cos (theta);
t = 1.0f - c;
in.x = in.y = in.z = 1.0f;
M(r, 0,0) = t*x*x + c;
M(r, 1,0) = t*x*y - s*z;
M(r, 2,0) = t*x*z + s*y;
M(r, 3,0) = 0;
M(r, 0,1) = t*x*y + s*z;
M(r, 1,1) = t*y*y + c;
M(r, 2,1) = t*y*z - s*x;
M(r, 3,1) = 0;
M(r, 0,2) = t*x*z - s*y;
M(r, 1,2) = t*y*z + s*x;
M(r, 2,2) = t*z*z + c;
M(r, 3,2) = 0;
m = glMatrixMultiply (m, r);
return m;
}
/* Convert matrix to Euler angles (in radians). */
GLvector glMatrixToEuler (GLmatrix mat, int order)
{
GLvector ea;
int i,j,k,h,n,s,f;
EulGetOrd (order,i,j,k,h,n,s,f);
if (s==EulRepYes) {
float sy = (float)sqrt(mat.elements[i][j]*mat.elements[i][j] + mat.elements[i][k]*mat.elements[i][k]);
if (sy > 16 * FLT_EPSILON) {
ea.x = (float)atan2(mat.elements[i][j], mat.elements[i][k]);
ea.y = (float)atan2(sy, mat.elements[i][i]);
ea.z = (float)atan2(mat.elements[j][i], -mat.elements[k][i]);
} else {
ea.x = (float)atan2(-mat.elements[j][k], mat.elements[j][j]);
ea.y = (float)atan2(sy, mat.elements[i][i]);
ea.z = 0;
}
} else {
float cy = (float)sqrt(mat.elements[i][i]*mat.elements[i][i] + mat.elements[j][i]*mat.elements[j][i]);
if (cy > 16*FLT_EPSILON) {
ea.x = (float)atan2(mat.elements[k][j], mat.elements[k][k]);
ea.y = (float)atan2(-mat.elements[k][i], cy);
ea.z = (float)atan2(mat.elements[j][i], mat.elements[i][i]);
} else {
ea.x = (float)atan2(-mat.elements[j][k], mat.elements[j][j]);
ea.y = (float)atan2(-mat.elements[k][i], cy);
ea.z = 0;
}
}
if (n==EulParOdd) {
ea.x = -ea.x;
ea.y = - ea.y;
ea.z = -ea.z;
}
if (f==EulFrmR) {
float t = ea.x;
ea.x = ea.z;
ea.z = t;
}
//ea.w = order;
return (ea);
}