-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmean_anchors.py
127 lines (111 loc) · 4.82 KB
/
kmean_anchors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from modules.box_utils import point_form, jaccard
from make_anchors.base_anchors import anchorBox
from modules.evaluation import get_gt_frames
import torch, pdb, json, os
import numpy as np
from data import VideoDataset
import argparse
parser = argparse.ArgumentParser(description='prepare VOC dataset')
# anchor_type to be used in the experiment
parser.add_argument('--base_dir', default='/mnt/mercury-alpha/', help='Location to root directory for the dataset')
# /mnt/mars-fast/datasets/
feature_size = [75, 38, 19, 10, 5]
feature_size = [1, 1, 1, 1, 1]
thresh = 0.5
def get_unique_anchors():
# print(print_str)
anchorbox = anchorBox()
anchors = anchorbox.forward(feature_size)
print(anchors.size())
unique_anchors = anchors.numpy()
unique_anchors[:,0] = unique_anchors[:,0]*0
unique_anchors[:,1] = unique_anchors[:,1]*0
anchors = np.unique(unique_anchors, axis=0)
return torch.from_numpy(anchors)
def get_dataset_boxes(base_dir, dataset, train_sets):
anno_file = os.path.join(base_dir, dataset, 'annots_12fps_full_v1.0.json')
with open(anno_file, 'r') as fff:
final_annots = json.load(fff)
print(train_sets)
_, gt_frames = get_gt_frames(final_annots, train_sets, 'agent_ness')
print('Length of gt frames', len(gt_frames))
all_boxes = None
for name, frame in gt_frames.items():
if len(frame)==0:
continue
boxes = []
for box in frame:
boxes.append(box[0])
boxes = torch.FloatTensor(boxes).view(-1,4)
boxes[:,2] = boxes[:,2] - boxes[:,0]
boxes[:,3] = boxes[:,3] - boxes[:,1]
boxes[:,0] = boxes[:,0] * 0.0
boxes[:,1] = boxes[:,1] * 0.0
if all_boxes is None:
all_boxes = boxes
else:
all_boxes = torch.cat((all_boxes, boxes),0)
print('Total number of boxes', all_boxes.shape)
return all_boxes
def get_center(b_idx, boxes, c):
# pdb.set_trace()
mask = b_idx==c
mask = mask.squeeze()
new_boxes = boxes[mask,:]
return new_boxes.mean(0)
def get_area(centers):
return centers[:,2]*centers[:,3]
def kmean_whs(base_dir):
for dataset in ['road']:
if dataset == 'coco':
train_sets = ['train2017']
val_sets = ['val2017']
max_itr = 10
else:
train_sets = ['train_1', 'train_2', 'train_3']
val_sets = ['val_1', 'val_2','val_3']
# val_sets = ['test']
max_itr = 10
unique_anchors = get_unique_anchors()
centers = unique_anchors.clone()
print(unique_anchors.size())
numc = centers.size(0)
boxes = get_dataset_boxes(base_dir, dataset, train_sets)
print('mins', boxes[:,2].min(), boxes[:,3].min())
print('maxes', boxes[:,2].max(), boxes[:,3].max())
print('mean', boxes[:,2].mean(), boxes[:,3].mean())
print('std', boxes[:,2].std(), boxes[:,3].std())
print('Initial centers\n', centers, boxes.size())
print('Areas of each:::', get_area(centers))
overlaps = jaccard(boxes, centers)
all_recall, best_center_idx = overlaps.max(1, keepdim=True)
count = all_recall.size(0)
# print(scales)
print('{:s} recall more than 0.5 {:.02f} average is {:.02f}'.format(dataset,
100.0*torch.sum(all_recall>thresh)/count, torch.mean(all_recall)))
for itr in range(max_itr):
overlaps = jaccard(boxes, centers)
all_recall, best_center_idx = overlaps.max(1, keepdim=True)
for c in range(numc):
centers[c,:] = get_center(best_center_idx, boxes, c)
print('Train Set: {:s}::{:d} recall more than 0.5 {:.02f} average is {:.02f}'.format(dataset,
itr, 100.0*torch.sum(all_recall>thresh)/count, torch.mean(all_recall)))
print(centers)
print('Areas of each:::', get_area(centers))
overlaps = jaccard(boxes, centers)
all_recall, best_center_idx = overlaps.max(1, keepdim=True)
count = all_recall.size(0)
# print(scales)
print('Train Set: {:s}:: recall more than 0.5 {:.02f} average is {:.02f}'.format(dataset,
100.0*torch.sum(all_recall>thresh)/count, torch.mean(all_recall)))
# print(centers)
boxes = get_dataset_boxes(base_dir, dataset, val_sets)
overlaps = jaccard(boxes, centers)
all_recall, best_center_idx = overlaps.max(1, keepdim=True)
count = all_recall.size(0)
# print(scales)
print('Val Set: {:s}:: recall more than 0.5 {:.02f} average is {:.02f}'.format(dataset,
100.0*torch.sum(all_recall>thresh)/count, torch.mean(all_recall)))
if __name__ == '__main__':
args = parser.parse_args()
kmean_whs(args.base_dir)