-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_dets.py
255 lines (204 loc) · 10.8 KB
/
gen_dets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""
Testing
"""
import os
import pickle
import time
import zipfile
import numpy as np
import torch
import torch.utils.data as data_utils
from data import custom_collate
from modules import utils
logger = utils.get_logger(__name__)
def gen_dets(args, net, val_dataset):
net.eval()
val_data_loader = data_utils.DataLoader(val_dataset, int(args.TEST_BATCH_SIZE), num_workers=args.NUM_WORKERS,
shuffle=False, pin_memory=True, collate_fn=custom_collate)
for epoch in args.EVAL_EPOCHS:
args.det_itr = epoch
logger.info('Testing at ' + str(epoch))
args.det_save_dir = os.path.join(args.SAVE_ROOT, "detections-{it:02d}-{sq:02d}-{n:d}_{subsets:s}/".format(it=epoch, sq=args.TEST_SEQ_LEN, n=int(100*args.GEN_NMS), subsets='-'.join(val_dataset.SUBSETS)))
logger.info('detection saving dir is :: '+args.det_save_dir)
args.predictions_file_pkl = os.path.join(args.SAVE_ROOT,
"pred_detections-{it:02d}-{sq:02d}-{n:d}_{subsets:s}.pkl".format(
it=epoch,
sq=args.TEST_SEQ_LEN,
n=int(100 * args.GEN_NMS), subsets='-'.join(val_dataset.SUBSETS)))
args.predictions_file_zip = os.path.join(args.SAVE_ROOT,
"pred_detections-{it:02d}-{sq:02d}-{n:d}_{subsets:s}.zip".format(
it=epoch,
sq=args.TEST_SEQ_LEN,
n=int(100 * args.GEN_NMS), subsets='-'.join(val_dataset.SUBSETS)))
logger.info('Detection saving pkl file path :: ' + args.predictions_file_pkl)
logger.info('Detection saving zip file path :: ' + args.predictions_file_zip)
is_all_done = True
if os.path.isdir(args.det_save_dir):
for vid, videoname in enumerate(val_dataset.video_list):
save_dir = '{:s}/{}'.format(args.det_save_dir, videoname)
if os.path.isdir(save_dir):
numf = val_dataset.numf_list[vid]
dets_list = [d for d in os.listdir(save_dir) if d.endswith('.pkl')]
if numf != len(dets_list):
is_all_done = False
print('Not done', save_dir, numf, len(dets_list))
break
else:
is_all_done = False
break
else:
is_all_done = False
os.makedirs(args.det_save_dir)
if is_all_done:
print('All done! skipping detection')
continue
args.MODEL_PATH = args.SAVE_ROOT + 'model_{:06d}.pth'.format(epoch)
net.load_state_dict(torch.load(args.MODEL_PATH))
logger.info('Finished loading model %d !' % epoch )
torch.cuda.synchronize()
tt0 = time.perf_counter()
net.eval() # switch net to evaluation mode
txt_saved_detections_file = perform_detection(args, net, val_data_loader, val_dataset, epoch)
# label_types = [args.label_types[0]]
# for nlt in range(len(label_types)):
# for ap_str in ap_strs[nlt]:
# logger.info(ap_str)
# ptr_str = '\n{:s} MEANAP:::=> {:0.5f}'.format(label_types[nlt], mAP[nlt])
# logger.info(ptr_str)
torch.cuda.synchronize()
logger.info('Complete set time {:0.2f}'.format(time.perf_counter() - tt0))
print('\n Pickle dets file', args.predictions_file_pkl)
print('\n Zip dets file', args.predictions_file_zip)
return args.predictions_file_pkl
def convert_pred_bbox_to_gt_size(preds):
# gt size is 960 x 1280
preds[:,0] = preds[:,0] / 682.0 * 1280.0
preds[:,1] = preds[:,1] / 512.0 * 960.0
preds[:,2] = preds[:,2] / 682.0 * 1280.0
preds[:,3] = preds[:,3] / 512.0 * 960.0
return preds
def update_preds_dict(videoname, frame_num, pred, preds_dict):
# pred is: first four numbers are bbox coordinates, next number is agentness score, then the rest of the 41 numbers are labels scores
pred = pred['main']
frame_num = '{:05d}.jpg'.format(frame_num)
if videoname not in preds_dict:
preds_dict[videoname] = {}
if frame_num not in preds_dict[videoname]:
preds_dict[videoname][frame_num] = []
pred = convert_pred_bbox_to_gt_size(pred)
for bbox_pred in pred:
# bbox_dict = {'bbox': bbox_pred[:4], 'agentness': bbox_pred[4], 'labels': bbox_pred[5:46]}
bbox_dict = {'bbox': bbox_pred[:4], 'labels': bbox_pred[5:46]}
preds_dict[videoname][frame_num].append(bbox_dict)
return preds_dict
def perform_detection(args, net, val_data_loader, val_dataset, iteration):
"""Test a network on a video database."""
num_images = len(val_data_loader.dataset) #len(val_dataset)
print_time = True
val_step = 50
count = 0
torch.cuda.synchronize()
ts = time.perf_counter()
activation = torch.nn.Sigmoid().cuda()
preds_dict = {}
# ego_pds = []
# ego_gts = []
det_boxes = []
# gt_boxes_all = []
for nlt in range(1):
numc = args.num_classes_list[nlt]
det_boxes.append([[] for _ in range(numc)])
# gt_boxes_all.append([])
nlt = 0
processed_videos = []
txt_saved_detections_file = args.det_save_dir + "/log-lo_" + args.det_save_dir.split('/')[-6] + "_ROAD_R_predictions_"
txt_saved_detections_file += args.MODEL_TYPE+"_logic-"+str(args.LOGIC)+"-"+str(args.req_loss_weight)+"_ag-"+str(args.agentness_th)+".txt"
f = open(txt_saved_detections_file, 'w')
with torch.no_grad():
# for val_itr, (images, gt_boxes, gt_targets, ego_labels, batch_counts, img_indexs, wh) in enumerate(val_data_loader):
# for val_itr, (images, gt_boxes, gt_targets, batch_counts, img_indexs, wh) in enumerate(val_data_loader):
for val_itr, (images, gt_boxes, gt_targets, batch_counts, img_indexs, wh, videonames, start_frames, is_pseudo_labelled) in enumerate(val_data_loader):
if args.DEBUG_num_iter:
if val_itr > args.DEBUG_num_iter:
break
torch.cuda.synchronize()
t1 = time.perf_counter()
batch_size = images.size(0)
images = images.cuda(0, non_blocking=True)
# decoded_boxes, confidence, ego_preds = net(images)
decoded_boxes, confidence = net(images)
# ego_preds = activation(ego_preds).cpu().numpy()
# ego_labels = ego_labels.numpy()
confidence = activation(confidence)
# seq_len = ego_preds.shape[1]
# seq_len = args.SEQ_LEN
seq_len = confidence.shape[1]
if print_time and val_itr%val_step == 0:
torch.cuda.synchronize()
tf = time.perf_counter()
logger.info('Forward Time {:0.3f}'.format(tf-t1))
for b in range(batch_size):
index = img_indexs[b]
annot_info = val_dataset.ids[index]
video_id, frame_num, step_size = annot_info
videoname = val_dataset.video_list[video_id]
save_dir = '{:s}/{}'.format(args.det_save_dir, videoname)
store_last = False
if videoname not in processed_videos:
processed_videos.append(videoname)
store_last = True
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
count += 1
for s in range(seq_len):
# if ego_labels[b,s]>-1:
# ego_pds.append(ego_preds[b,s,:])
# ego_gts.append(ego_labels[b,s])
# gt_boxes_batch = gt_boxes[b, s, :batch_counts[b, s],:].numpy()
# gt_labels_batch = gt_targets[b, s, :batch_counts[b, s]].numpy()
decoded_boxes_batch = decoded_boxes[b,s]
# frame_gt = utils.get_individual_labels(gt_boxes_batch, gt_labels_batch[:,:1])
# gt_boxes_all[0].append(frame_gt)
confidence_batch = confidence[b,s]
scores = confidence_batch[:, 0].squeeze().clone()
cls_dets, save_data = utils.filter_detections_for_dumping(args, scores, decoded_boxes_batch, confidence_batch)
det_boxes[0][0].append(cls_dets)
#
save_data_clean = save_data[:, 0:46]
for detts in range(len(save_data_clean)):
single_item = save_data_clean[detts]
f.write(videonames[b] + ',' + '{:05d}.jpg'.format(start_frames[b] + 1 + s) + ',')
for itt in range(single_item.shape[0]):
f.write(str(single_item[itt]) + ',')
f.write('\n')
save_name = '{:s}/{:05d}.pkl'.format(save_dir, frame_num+1)
frame_num += step_size
save_data = {'main':save_data}
if s<seq_len-args.skip_ending or store_last:
preds_dict = update_preds_dict(videoname, frame_num, save_data, preds_dict)
with open(save_name,'wb') as ff:
pickle.dump(save_data, ff)
if print_time and val_itr%val_step == 0:
torch.cuda.synchronize()
te = time.perf_counter()
logger.info('im_detect: {:d}/{:d} time taken {:0.3f}'.format(count, num_images, te-ts))
torch.cuda.synchronize()
ts = time.perf_counter()
if print_time and val_itr%val_step == 0:
torch.cuda.synchronize()
te = time.perf_counter()
logger.info('NMS stuff Time {:0.3f}'.format(te - tf))
# write dict to pkl for EVAL AI submission
with open(args.predictions_file_pkl, 'wb') as preds_f:
pickle.dump(preds_dict, preds_f)
zf = zipfile.ZipFile(args.predictions_file_zip, 'w', zipfile.ZIP_DEFLATED)
zf.writestr(args.predictions_file_pkl.split('/')[-1], pickle.dumps(preds_dict))
# mAP, ap_all, ap_strs = evaluate.evaluate(gt_boxes_all, det_boxes, args.all_classes, iou_thresh=args.IOU_THRESH)
# mAP_ego, ap_all_ego, ap_strs_ego = evaluate.evaluate_ego(np.asarray(ego_gts), np.asarray(ego_pds), args.ego_classes)
# return mAP + [mAP_ego], ap_all + [ap_all_ego], ap_strs + [ap_strs_ego]
# print('mAP:', mAP)
# print('ap_all:', ap_all)
# print('ap_strs:', ap_strs)
# f.close()
# return mAP , ap_all , ap_strs, txt_saved_detections_file
return txt_saved_detections_file