-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexperiment.py
231 lines (209 loc) · 8.8 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import time
import os
import networks
import numpy as np
import argparse
import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10, MNIST, SVHN
from torchvision import transforms
import torch.nn.functional as F
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, required=True, choices=['train', 'prune', 'test'])
parser.add_argument('--model', type=str, required=True, choices=['resnet', 'vgg', 'inception', 'mobilenetv2',
'mobilenetv3', 'resnet50', 'efficientnet'])
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--total_epochs', type=int, default=100)
parser.add_argument('--step_size', type=int, default=70)
parser.add_argument('--name_to_save', type=str, default='model')
parser.add_argument('--load_weights', type=str)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--quantize', action='store_true', default=False)
parser.add_argument('--agg_prune', action='store_true', default=False)
parser.add_argument('--dataset', type=str, required=True, choices=['cifar', 'mnist', 'svhn'])
args = parser.parse_args()
if args.dataset == 'cifar':
mnist = False
elif args.dataset == 'mnist':
mnist = True
elif args.dataset == 'svhn':
mnist = False
if args.model == 'resnet':
# model_to_train = resnet18.ResNet
# modules_to_fuse = resnet18.modules_to_fuse_resnet()
# prune_model = resnet18.prune_model_resnet
pass
elif args.model == 'vgg':
# model_to_train = VGG19.vgg19_bn
# modules_to_fuse = VGG19.modules_to_fuse_vgg()
# prune_model = VGG19.prune_model_vgg
pass
elif args.model == 'inception':
# model_to_train = inception.inception_v3
# modules_to_fuse = inception.modules_to_fuse_inception()
# prune_model = inception.prune_model_inception
pass
elif args.model == 'mobilenetv2':
model_to_train = networks.ExpModel(mnist=mnist)
elif args.model == 'mobilenetv3':
model_to_train = networks.ExpModel_Mobv3(mnist=mnist)
elif args.model == 'efficientnet':
model_to_train = networks.ExpModel_Effnet(mnist=mnist)
elif args.model == 'resnet50':
# model_to_train = resnet50.resnet50
# modules_to_fuse = resnet50.modules_to_fuse_resnet50()
# prune_model = resnet50.prune_model_resnet50
pass
def get_dataloader():
if args.dataset == 'svhn':
train_loader = torch.utils.data.DataLoader(
SVHN('./data', split='train', transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]), download=True), batch_size=args.batch_size, num_workers=1,
shuffle=True, pin_memory=True)
test_loader = torch.utils.data.DataLoader(
SVHN('./data', split='test', transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]), download=True), batch_size=args.batch_size, num_workers=1,
shuffle=True, pin_memory=True)
elif args.dataset == 'mnist':
train_loader = torch.utils.data.DataLoader(
MNIST('./data', train=True, transform=transforms.Compose([
transforms.Resize([32, 32]),
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]), download=True), batch_size=args.batch_size, num_workers=1,
shuffle=True, pin_memory=True)
test_loader = torch.utils.data.DataLoader(
MNIST('./data', train=False, transform=transforms.Compose([
transforms.Resize([32, 32]),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]), download=True), batch_size=args.batch_size, num_workers=1,
shuffle=True, pin_memory=True)
elif args.dataset == 'cifar':
train_loader = torch.utils.data.DataLoader(
CIFAR10('./data', train=True, transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]), download=True), batch_size=args.batch_size, num_workers=1,
shuffle=True, pin_memory=True)
test_loader = torch.utils.data.DataLoader(
CIFAR10('./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]), download=True), batch_size=args.batch_size, num_workers=1,
shuffle=True, pin_memory=True)
return train_loader, test_loader
def print_size_of_model(model):
""" Print the size of the model.
Args:
model: model whose size needs to be determined
"""
torch.save(model.state_dict(), "temp.p")
print('Size of the model(MB):', os.path.getsize("temp.p") / 1e6)
os.remove('temp.p')
def calibrate_model(model, loader):
print("Calibrating...")
device = args.device
model.to(device)
model.eval()
for inputs, labels in loader:
inputs = inputs.to(device)
_ = model(inputs)
def eval(model, test_loader, quantize=False, train_loader=None):
correct = 0
total = 0
timings = list()
device = args.device
model.to(device)
model.eval()
if quantize:
model.fuse_model()
model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
torch.quantization.prepare(model, inplace=True)
calibrate_model(model, train_loader)
torch.quantization.convert(model, inplace=True)
model.eval()
with torch.no_grad():
for i, (img, target) in enumerate(test_loader):
img = img.to(device)
st = time.time()
out = model(img)
et = time.time()
timings.append((et - st) * 1000)
pred = out.max(1)[1].detach().cpu().numpy()
target = target.cpu().numpy()
correct += (pred == target).sum()
total += len(target)
print_size_of_model(model)
return correct / total, timings
def train_model(model, train_loader, test_loader):
device = args.device
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=0)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.step_size, 0.1)
model.to(device)
best_acc = -1
for epoch in range(args.total_epochs):
model.train()
for i, (img, target) in enumerate(train_loader):
img, target = img.to(device), target.to(device)
optimizer.zero_grad()
out = model(img)
loss = F.cross_entropy(out, target)
loss.backward()
optimizer.step()
model.eval()
acc, _ = eval(model, test_loader)
print("Epoch %d/%d, Acc=%.4f, Loss=%.4f" % (epoch, args.total_epochs, acc, loss.item()))
if best_acc < acc:
torch.save(model, args.name_to_save)
print("===Model at epoch %d saved===" % epoch)
best_acc = acc
scheduler.step()
print("Best Acc=%.4f" % best_acc)
def main():
train_loader, test_loader = get_dataloader()
if args.mode == 'train':
args.round = 0
model = model_to_train
train_model(model, train_loader, test_loader)
elif args.mode == 'prune':
previous_ckpt = args.load_weights
print("Pruning model from %s" % previous_ckpt)
model = torch.load(previous_ckpt)
model, _, _ = model.prune(model, agg=args.agg_prune)
print(model)
params = sum([np.prod(p.size()) for p in model.parameters()])
print("Number of Parameters: %.1fM" % (params / 1e6))
train_model(model, train_loader, test_loader)
elif args.mode == 'test':
ckpt = args.load_weights
print("Load model from %s" % ckpt)
model = torch.load(ckpt)
acc, timings = eval(model, test_loader, quantize=args.quantize, train_loader=train_loader)
params = sum([np.prod(p.size()) for p in model.parameters()])
mean = np.mean(timings[11:])
std = np.std(timings[11:])
print("Number of Parameters: %.1fM" % (params / 1e6))
print('Mean time elapsed: {:0.4f}'.format(mean))
print('Std time elapsed: {:0.4f}'.format(std))
print("Acc=%.4f\n" % acc)
return mean, std
if __name__ == '__main__':
main()
# avg_mean = 0
# avg_std = 0
# for i in range(3):
# mean, std = main()
# avg_mean += mean
# avg_std += std
# print('avg_mean = {:0.2f}; avg_std = {:0.2f}'. format(avg_mean/3, avg_std/3))