-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathinfer.py
60 lines (52 loc) · 2.2 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
import argparse
from pathlib import Path
from torchvision import io
from torchvision import transforms as T
from models import *
from datasets import ImageNet
class ModelInference:
def __init__(self, model: str, variant: str, checkpoint: str, size: int) -> None:
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# dataset class labels (change to trained dataset labels) (can provide a list of labels here)
self.labels = ImageNet.CLASSES
# model initialization
self.model = eval(model)(variant, checkpoint, len(self.labels), size)
self.model = self.model.to(self.device)
self.model.eval()
self.preprocess = T.Compose([
T.Lambda(lambda x: x / 255),
T.Resize((size, size)),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
T.Lambda(lambda x: x.unsqueeze(0))
])
def __call__(self, img_path: str) -> str:
# read image
image = io.read_image(img_path)
# preprocess
image = self.preprocess(image).to(self.device)
# model pass
with torch.inference_mode():
pred = self.model(image)
# postprocess
cls_name = self.labels[pred.argmax()]
return cls_name
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--source', type=str, default='assests/dog.jpg')
parser.add_argument('--model', type=str, default='VAN')
parser.add_argument('--variant', type=str, default='S')
parser.add_argument('--checkpoint', type=str, default='/home/sithu/Documents/weights/backbones/van/van_small_811.pth.tar')
parser.add_argument('--size', type=int, default=224)
args = vars(parser.parse_args())
source = args.pop('source')
file_path = Path(source)
model = ModelInference(**args)
if file_path.is_file():
cls_name = model(str(file_path))
print(f"{file_path} >>>>> {cls_name.capitalize()}")
else:
files = file_path.glob('*jpg')
for file in files:
cls_name = model(str(file))
print(f"{file} >>>>> {cls_name.capitalize()}")