-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmain.py
27 lines (25 loc) · 1.19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import pandas as pd
def df_s(pth):
data_s=pd.read_csv(pth)
#data_s=pd.read_json(pth).dropna()
data_hanzi=pd.read_csv('./data/kangxi-strokecount.csv')[['Character','Strokes']]
data_wuxing=pd.read_csv('./data/wuxing.csv')
dict_s=[]
for i in data_s.index:
for m in data_s['content'][i]:
for n in data_s['content'][i]:
dict_s.append([m,n,data_s['content'][i],data_s['title'][i]])
#for j in data_s['content'][i].split('。'):
#for n in j:
#for m in j:
#dict_s.append([n,m,j,data_s['title'][i]])
df_s=pd.DataFrame(dict_s).drop_duplicates()
df_s=df_s.rename(columns={0:'one',1:'two',2:'content',3:'title'})
df_s['wuxing_one']='0'
df_s=df_s.merge(data_wuxing,how='inner',left_on='one',right_on='hanzi')
df_s=df_s.merge(data_wuxing,how='inner',left_on='two',right_on='hanzi')
df_s=df_s.merge(data_hanzi,how='inner',left_on='one',right_on='Character')
df_s=df_s.merge(data_hanzi,how='inner',left_on='two',right_on='Character')
df_s['Strokes']=df_s['Strokes_x']+df_s['Strokes_y']
return df_s
df_s('./data/shijing_fanti.csv').to_csv('shijing.csv')