-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalytical_pi.m
162 lines (152 loc) · 5.34 KB
/
analytical_pi.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
function [pi] = analytical_pi(N, lambda, epsilon, delta, M, optimistic)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% function: analytical_pi %
% author: Federico Chiariotti ([email protected]) %
% license: GPLv3 %
% %
% %
% %
% Computes the steady-state distribution of the semi-Markov model %
% %
% Inputs: %
% -N: the number of nodes [scalar] %
% -lambda: the generation rate for all nodes [scalar] %
% -epsilon: the wireless channel error probability [scalar] %
% -delta: the number of slots resolved in each BT round [scalar] %
% -M: the maximum AoII [scalar] %
% %
% Outputs: %
% -pi: the steady-state distribution [1 x N] %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Auxiliary vectors and parameters
K = delta + 1;
ps = zeros(K + 1, N);
xi = zeros(M + 1, N);
nu = zeros(1, N);
for k = 1 : K + 1
% Optimize transmission probabilities
for n = 1 : N
ps(k, n) = optimize_cr(1 - (1 - lambda) ^ k, epsilon, N - n + 1, 0.00001);
end
% Compute collision probabilities
active = 1 - (1 - lambda) ^ k;
for n = 2 : N
xi(k, n) = 1 - (1 - active) ^ n - n * active * (1 - active) ^ (n - 1);
end
nu(1) = delta;
for n = 2 : N
nu(n) = floor(delta / n);
end
end
% Compute collision resolution transition matrix
Pcs = {};
for k = 1 : K + 1
for c = 2 : N
Pc = zeros(c);
Pc(c, c) = 1;
for i = 1 : c - 1
Pc(i, i + 1) = (1 - epsilon) * (c - i + 1) * ps(k, i) * (1 - ps(k, i)) ^ (c - i);
Pc(i, i) = 1 - Pc(i, i + 1);
end
Pcs{k, c} = Pc;
end
end
% Compute distribution of collision resolution time
zetas = zeros(K + 1, M);
for k = 1 : K + 1
active = 1 - (1 - lambda) ^ k;
coeff = 1 - (1 - active) ^ N - (1 - epsilon) * N * (1 - active) ^ (N - 1) * active;
% Singleton collision
prob = epsilon * N * (1 - active) ^ (N - 1) * active / coeff;
for m = 1 : M - 1
zetas(k, m + 1) = prob * (1 - (1 - (1 - epsilon) * ps(k, 1)) ^ m);
end
for c = 2 : N
prob = nchoosek(N, c) * (1 - active) ^ (N - c) * active ^ c / coeff;
for m = 1 : M - c + 1
Pc = (Pcs{k, c}) ^ m;
p_cr = prob * Pc(1, c);
zetas(k, m + c - 1) = zetas(k, m + c - 1) + p_cr * (1 - epsilon);
for ell = 1 : M - m - c
p_geo = (1 - (1 - epsilon) * ps(k, c)) ^ (ell - 1) * (1 - epsilon) * ps(k, c);
zetas(k, m + c + ell) = zetas(k, m + c + ell) + p_cr * epsilon * p_geo;
end
end
end
end
for k = 1 : K + 1
zetas(k, 2 : M) = diff(zetas(k, :));
zetas(k, M) = 1 - sum(zetas(k, 1 : M - 1));
end
% Compute number of contending nodes (optimistic estimate)
eta = zeros(1, M);
if (optimistic == 1)
etas = ones(M, N);
for c = 1 : N
prob = nchoosek(N, c) * lambda ^ c * (1 - lambda) ^ (N - c);
if (c == 1)
prob = prob * epsilon;
end
sigma = (1 - epsilon) * c * ps(1, 1) * (1 - ps(1, 1)) ^ (c - 1);
for m = 2 : M
pm = sigma * (1 - sigma) ^ (m - 1);
etas(m, c) = prob * pm / zetas(1, m);
end
end
for m = 2 : M
etas(m, :) = etas(m, :) / sum(etas(m, :));
eta(m) = sum(etas(m, :) .* (1 : N));
end
end
% Transition and soujourn matrices
P = zeros(2 * M + 2);
T = ones(2 * M + 2);
% Transition from state ZW
P(1, M + 2) = 1;
T(1, M + 2) = min(1 / xi(1, N - floor(eta(M))), 1e9);
% Transitions from state BT(i)
for i = 1 : M
Kp = nu(N - floor(eta(i)));
j = max(0, i - Kp + 1);
if (Kp == 0)
Kp = 1;
end
if (j > M)
j = M;
end
% Failure
P(1 + i, j + M + 2) = xi(Kp, N - floor(eta(i)));
P(i + 1, j + 1) = 1 - xi(Kp, N - floor(eta(i)));
end
% Transitions from state CR(j)
for i = 1 : M - 1
for j = 0 : i - 1
Kp = 1;
if (j > 0)
Kp = nu(N - floor(eta(j)));
end
if (Kp == 0)
Kp = 1;
end
P(j + M + 2, i + 1) = zetas(min(Kp, j + 1), i - j);
T(j + M + 2, i + 1) = i - j;
end
end
for j = 0 : M
P(j + M + 2, M + 1) = 1 - sum(P(j + M + 2, 1 : 2 * M + 1));
end
% Compute steady-state distribution
[~, D, W] = eig(P);
[~, m_idx] = min(abs(1 - diag(D)));
alphas = W(:, m_idx) / sum(W(:, m_idx));
pi = zeros(2 * M + 2, 1);
for s = 1 : 2 * M + 2
for sn = 1 : 2 * M + 2
g = alphas(s) * T(s, sn) * P(s, sn);
pi(s) = pi(s) + alphas(s) * T(s, sn) * P(s, sn);
end
end
pi = pi / sum(pi);
end