-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathutils.py
224 lines (175 loc) · 7.34 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import re
import glob
import os
import sys
import skimage
import numpy as np
import theano.tensor as T
from sklearn.cross_validation import StratifiedShuffleSplit
import string
import lasagne as nn
def padtosquare(im):
w, l = im.shape
if w < l:
pad_size = (l - w) / 2.0
im_new = skimage.util.pad(im, pad_width=((int(np.floor(pad_size)),
int(np.ceil(pad_size))),
(0, 0)),
mode='constant',
constant_values=(1, 1))
else:
pad_size = (w - l) / 2.0
im_new = skimage.util.pad(im, pad_width=((0, 0),
(int(np.floor(pad_size)),
int(np.ceil(pad_size)))),
mode='constant',
constant_values=(1, 1))
return im_new
def one_hot(vec, m=None):
if m is None:
m = int(np.max(vec)) + 1
return np.eye(m)[vec].astype('int32')
def hms(seconds):
seconds = np.floor(seconds)
minutes, seconds = divmod(seconds, 60)
hours, minutes = divmod(minutes, 60)
return "%02d:%02d:%02d" % (hours, minutes, seconds)
def rms(x, axis=None, epsilon=1e-12):
return T.sqrt(T.mean(T.sqr(x), axis=axis) + epsilon)
# TODO clean this mess up
def split_data(train_labels, labels_split, valid_size=20,
SEED=42, stratified=True, pairs=False):
if valid_size >= 100:
return None
num_all = len(train_labels)
np.random.seed(SEED)
if stratified:
if pairs:
# TODO: Taking max level to stratify for now.
label_pairs = labels_split.groupby('id')['level'].max()
label_pairs.index = map(int, label_pairs.index)
label_pairs = label_pairs.sort_index(ascending=True)
sss = StratifiedShuffleSplit(label_pairs.values, n_iter=1,
test_size=0.01 * valid_size,
indices=None, random_state=SEED)
else:
sss = StratifiedShuffleSplit(train_labels.level, n_iter=1,
test_size=0.01 * valid_size,
indices=None, random_state=SEED)
for ix_train, ix_test in sss:
pass
# TODO: has no next(), need to figure this out
else:
shuffled_index = np.random.permutation(np.arange(num_all))
num_valid = num_all // (100 / valid_size)
num_train = num_all - num_valid
ix_train = shuffled_index[:num_train]
ix_test = shuffled_index[num_train:]
if pairs:
id_train = np.sort(np.asarray(label_pairs.index[ix_train]))
y_train_left = labels_split[
labels_split.id.isin(id_train)].level.values[::2]
y_train_right = labels_split[
labels_split.id.isin(id_train)].level.values[1::2]
y_train = np.vstack([y_train_left, y_train_right]).T
# TODO are they sorted
assert labels_split[
labels_split.id.isin(id_train)].eye[::2].unique().shape[0] == 1
assert labels_split[
labels_split.id.isin(id_train)].eye[1::2].unique().shape[0] == 1
id_valid = np.sort(np.asarray(label_pairs.index[ix_test]))
y_valid_left = labels_split[
labels_split.id.isin(id_valid)].level.values[::2]
y_valid_right = labels_split[
labels_split.id.isin(id_valid)].level.values[1::2]
y_valid = np.vstack([y_valid_left, y_valid_right]).T
# TODO are they sorted
assert labels_split[
labels_split.id.isin(id_valid)].eye[::2].unique().shape[0] == 1
assert labels_split[
labels_split.id.isin(id_valid)].eye[1::2].unique().shape[0] == 1
else:
id_train = train_labels.ix[ix_train].image.values
y_train = train_labels.ix[ix_train].level.values
id_valid = train_labels.ix[ix_test].image.values
y_valid = train_labels.ix[ix_test].level.values
return id_train, y_train, id_valid, y_valid
# TODO: very ugly stuff here, can probably be done a lot better
def oversample_set(id_train, y_train, coefs):
train_1 = list(np.where(np.apply_along_axis(
lambda x: 1 in x,
1,
y_train))[0])
train_2 = list(np.where(np.apply_along_axis(
lambda x: 2 in x,
1,
y_train))[0])
train_3 = list(np.where(np.apply_along_axis(
lambda x: 3 in x,
1,
y_train))[0])
train_4 = list(np.where(np.apply_along_axis(
lambda x: 4 in x,
1,
y_train))[0])
id_train_oversample = list(id_train)
id_train_oversample += list(id_train[coefs[1] * train_1])
id_train_oversample += list(id_train[coefs[2] * train_2])
id_train_oversample += list(id_train[coefs[3] * train_3])
id_train_oversample += list(id_train[coefs[4] * train_4])
labels_train_oversample = np.array(y_train)
labels_train_oversample = np.vstack([labels_train_oversample,
y_train[coefs[1] * train_1]])
labels_train_oversample = np.vstack([labels_train_oversample,
y_train[coefs[2] * train_2]])
labels_train_oversample = np.vstack([labels_train_oversample,
y_train[coefs[3] * train_3]])
labels_train_oversample = np.vstack([labels_train_oversample,
y_train[coefs[4] * train_4]])
return id_train_oversample, labels_train_oversample
def get_img_ids_from_iter(ar):
test_ids = []
prog = re.compile(r'\b(\d+)_(\w+)')
for img_fn in ar:
try:
test_id, test_side = prog.search(img_fn).groups()
except AttributeError:
print img_fn
sys.exit(0)
test_id = int(test_id)
test_ids.append(test_id)
return test_ids
def get_img_ids_from_dir(img_dir):
test_fns = glob.glob(os.path.join(img_dir, "*.jpeg"))
return get_img_ids_from_iter(test_fns)
def softmax(ar, temp=1):
e = np.exp(ar / temp)
return e / e.sum(axis=1)[:, None]
def architecture_string(layer):
model_arch = ''
for i, layer in enumerate(nn.layers.get_all_layers(layer)):
name = string.ljust(layer.__class__.__name__, 28)
model_arch += " %2i %s %s " % (i, name,
nn.layers.get_output_shape(layer))
if hasattr(layer, 'filter_size'):
model_arch += str(layer.filter_size[0])
model_arch += ' //'
elif hasattr(layer, 'pool_size'):
if isinstance(layer.pool_size, int):
model_arch += str(layer.pool_size)
else:
model_arch += str(layer.pool_size[0])
model_arch += ' //'
if hasattr(layer, 'p'):
model_arch += ' [%.2f]' % layer.p
if hasattr(layer, 'stride'):
model_arch += str(layer.stride[0])
if hasattr(layer, 'learning_rate_scale'):
if layer.learning_rate_scale != 1.0:
model_arch += ' [lr_scale=%.2f]' % layer.learning_rate_scale
if hasattr(layer, 'params'):
for param in layer.params:
if 'trainable' not in layer.params[param]:
model_arch += ' [NT] '
model_arch += '\n'
return model_arch