Quantum teleportation
is a protocol where a sender transmits a qubit to a receiver by making use of a shared entangled quantum state along with two bits of classical communication.
- The entanglement is lost in the process.
┌─────────────────────┐ ┌───┐ ░ ┌─┐ ░
q3_0: ──────┤ Initialize(0.6,0.8) ├─────────■──┤ H ├─░─┤M├────░───────■─
┌─────┴─────────────────────┴──────┐┌─┴─┐└───┘ ░ └╥┘┌─┐ ░ │
q3_1: ┤0 ├┤ X ├──────░──╫─┤M├─░───■───┼─
│ Initialize(0.70711,0,0,0.70711) │└───┘ ░ ║ └╥┘ ░ ┌─┴─┐ │
q3_2: ┤1 ├───────────░──╫──╫──░─┤ X ├─■─
└──────────────────────────────────┘ ░ ║ ║ ░ └───┘
c0: 2/══════════════════════════════════════════════════╩══╩════════════
0 1
Superdense Coding
allows for the transmission of two classical bits using one qubit of quantum communication at the cost of one e-bit of entanglement.
- Through superdense coding, shared entanglement effectively allows for the doubling of the classical information-carrying capacity of sending qubits.
- Holevo's Threorom
┌───┐ ░ ┌───┐┌───┐ ░ ┌───┐ ░ ░ ┌─┐
a: ┤ H ├──■───░─┤ Z ├┤ X ├─░───■──┤ H ├─░──░─┤M├───
└───┘┌─┴─┐ ░ └───┘└───┘ ░ ┌─┴─┐└───┘ ░ ░ └╥┘┌─┐
b: ─────┤ X ├─░────────────░─┤ X ├──────░──░──╫─┤M├
└───┘ ░ ░ └───┘ ░ ░ ║ └╥┘
meas: 2/═══════════════════════════════════════════╩══╩═
0 1
- Different circuits are generated based on the inputs, the above is for (c, d) = (1, 1)
- Circuit between the first and second barrier changes based on the inputs. (The Z and X gate.)
$$
|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)
$$
$$
|\Phi^-\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)
$$
$$
|\Psi^+\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)
$$
$$
|\Psi^-\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)
$$