-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathclassifiers.py
66 lines (55 loc) · 2.46 KB
/
classifiers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# This file is used to fit different type od classifiers on the featureset generated through tf and tfidf.
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model.stochastic_gradient import SGDClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from UnigramTfFeatureGeneration import create_feature_set_and_labels
from UnigramTfifdFeaturesetGeneration import get_features
def begin_test(train_x, test_x, train_y, test_y):
x = train_x + test_x
y = train_y + test_y
clf1 = LinearRegression()
clf2 = LogisticRegression()
clf3 = SGDClassifier()
clf4 = SVC()
clf5 = KNeighborsClassifier()
clf6 = MLPClassifier()
clf7 = DecisionTreeClassifier()
clf8 = MultinomialNB()
# clf1.fit(train_x, train_y)
# y_pred = clf1.predict(test_x)
# print("LinearRegressionAccuracy ", accuracy_score(test_y, y_pred.round()))
eclf = VotingClassifier(
estimators=[('logr', clf2), ('sgd', clf3), ('svm', clf4), ('kn', clf5), ('nn', clf6), ('dt', clf7)],
voting='hard')
for label, clf in zip(
['LogisticRegressionClassifier', 'SGDClassifierClassifier', 'SVCClassifier',
'NearestNeighbourClassifier', 'NeuralNetworkClassifier', 'DecisionTreeClassifier',
'MultinomialNB', 'EnsembleClassifier'],
[clf2, clf3, clf4, clf5, clf6, clf7, clf8, eclf]):
scores = cross_val_score(clf, x, y, cv=10, scoring='accuracy')
f_measure = cross_val_score(clf, x, y, cv=10, scoring='f1')
# print(scores)
print(label, "Accuracy: ", scores.mean(), "+/- ", scores.std())
print(label, "F-measure: ", f_measure.mean())
def test_by_tf():
train_x, train_y, test_x, test_y = create_feature_set_and_labels \
('pos_hindi.txt', 'neg_hindi.txt')
begin_test(train_x, test_x, train_y, test_y)
def test_by_tfidf():
train_x, train_y, test_x, test_y = get_features()
begin_test(train_x, test_x, train_y, test_y)
if __name__ == '__main__':
print("="*10)
print("Unigram+Tf Accuracies")
test_by_tf()
print("=" * 10)
print("Unigram+Tfidf Accuracies")
test_by_tfidf()