-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathitem_filters.py
91 lines (65 loc) · 2.59 KB
/
item_filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from abc import ABC, abstractmethod
from numbers import Number
from typing import Any, Optional, Dict, Set
import re
import pandas as pd
INF = float('inf')
class ItemFilter(ABC):
@abstractmethod
def filter(self, item: Any) -> bool:
pass
def __call__(self, item: Any) -> bool:
return self.filter(item)
UserPreference = Dict[str, ItemFilter]
class RegexFilter(ItemFilter):
"""Filters based on whether regex pattern can be found in item"""
def __init__(self, pattern: str):
self.filter_re = re.compile(pattern)
def filter(self, item: str) -> bool:
return bool(self.filter_re.search(item))
class NumericalFilter(ItemFilter):
"""
Filters based on numerical value. You can either set min and max values or
set only a single value by keyword arguments.
"""
def __init__(self,
min_value: Optional[Number] = None,
max_value: Optional[Number] = None):
self.min_value = min_value if min_value is not None else -INF
self.max_value = max_value if max_value is not None else INF
assert self.min_value <= self.max_value, \
f'Min value {self.min_value} is greater than max value {self.max_value}'
def filter(self, item: Number) -> bool:
return self.min_value <= item <= self.max_value
class SetFilter(ItemFilter):
"""Filters based on whether item is in set."""
def __init__(self, values: Set[Any]):
self.values = set(values)
assert len(self.values) > 0, 'Set cannot be empty'
def filter(self, item: Any) -> bool:
return item in self.values
class NotFilter(ItemFilter):
"""
Apply logical not to another ItemFilter. To i.e. exclude items in range
[5, 10] from a numerical filter, you can do:
>>> not_filter = NotFilter(NumericalFilter(5, 10))
>>> df[some_numerical_column].apply(not_filter)
"""
def __init__(self, item_filter: ItemFilter):
self.item_filter = item_filter
assert isinstance(item_filter, ItemFilter), \
'Supplied argument is not a ItemFilter'
def filter(self, item: Any) -> bool:
return not self.item_filter(item)
def filter_on_user_pref(user_pref: Optional[UserPreference],
df_train: pd.DataFrame) -> pd.DataFrame:
"""
Filter a dataframe based on user preferences. If user_pref is None,
return the original dataframe.
"""
if user_pref is None:
return df_train
df_user = df_train.copy()
for col, item_filter in user_pref.items():
df_user = df_user[df_user[col].apply(item_filter)]
return df_user