-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathload_meta_movie.py
66 lines (53 loc) · 2.29 KB
/
load_meta_movie.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import tensorflow as tf
import pickle
import os
import numpy as np
import helper
sess = tf.Session()
max_len = 39
data_folder_name = 'temp'
vocab_name = 'movie_vocab.pkl'
tfrecord_test_name = 'movie_text2num_test1code.tfrecord'
with open(os.path.join(data_folder_name, vocab_name), 'rb') as f:
word_dict = pickle.load(f)
ckpt_name = 'movie_emo_classifier_cnn_adam.ckpt'
ckpt_path = os.path.join(data_folder_name, ckpt_name)
saver = tf.train.import_meta_graph(ckpt_path+'.meta')
saver.restore(sess, ckpt_path)
graph = tf.get_default_graph()
handle = graph.get_tensor_by_name('handle:0')
predict = graph.get_tensor_by_name('predict:0')
def write_binary(tf_record_name, texts_, target_):
writer = tf.python_io.TFRecordWriter(os.path.join(data_folder_name, tf_record_name))
for it, text in enumerate(texts_):
example = tf.train.Example(
features=tf.train.Features(
feature={
"text": tf.train.Feature(int64_list=tf.train.Int64List(value=text)),
"label": tf.train.Feature(int64_list=tf.train.Int64List(value=[target_[it]]))}
)
)
serialized = example.SerializeToString()
writer.write(serialized)
writer.close()
def __parse_function(serial_exmp):
features = tf.parse_single_example(serial_exmp, features={"text": tf.VarLenFeature(tf.int64),
"label": tf.FixedLenFeature([], tf.int64)})
text = tf.sparse_tensor_to_dense(features["text"])
label = tf.cast(features["label"], tf.int32)
return text, label
def get_dataset(tf_record_name):
dataset = tf.data.TFRecordDataset(os.path.join(data_folder_name, tf_record_name))
return dataset.map(__parse_function)
test_str = ['i like watch this movies']
test_str = helper.text_to_numbers(test_str, word_dict)
write_binary(tfrecord_test_name, test_str, [1])
data_set_test = get_dataset(tfrecord_test_name)
data_set_test = data_set_test.padded_batch(1, ([max_len], []))
data_set_test_iter = data_set_test.make_one_shot_iterator()
handle_test = sess.run(data_set_test_iter.string_handle())
feed_dict = {handle: handle_test}
print(sess.run(predict, feed_dict))
os.remove(os.path.join(data_folder_name, tfrecord_test_name))
# name = [n.name for n in graph.as_graph_def().node]
# print(name)