-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdoc2vec.py
113 lines (102 loc) · 4.72 KB
/
doc2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import os
import pickle
import helper
from nltk.corpus import stopwords
from tensorflow.python.framework import ops
ops.reset_default_graph()
sess = tf.Session()
os.chdir(os.path.dirname(os.path.realpath(__file__)))
# Make a saving directory if it doesn't exist
data_folder_name = 'temp'
if not os.path.exists(data_folder_name):
os.makedirs(data_folder_name)
# Declare model parameters
batch_size = 500
vocabulary_size = 7500
generations = 100000
model_learning_rate = 0.001
embedding_size = 200 # Word embedding size
doc_embedding_size = 100 # Document embedding size
concatenated_size = embedding_size + doc_embedding_size
num_sampled = int(batch_size/2) # Number of negative examples to sample.
window_size = 3 # How many words to consider to the left.
# Add checkpoints to training
save_embeddings_every = 5000
print_valid_every = 5000
print_loss_every = 500
# Declare stop words
stops = stopwords.words('english')
# stops = []
# We pick a few test words for validation.
valid_words = ['love', 'hate', 'happy', 'sad', 'man', 'woman']
# Later we will have to transform these into indices
# pre process of data
print('Creating Dictionary')
texts, target = helper.load_movie_data()
texts = helper.normalize_text(texts, stops)
texts = [x for x in texts if len(x.split()) > window_size]
target = [target[ix] for ix, x in enumerate(texts) if len(x.split()) > window_size]
word_dict = helper.build_dictionary(texts, vocabulary_size)
word_dict_rev = dict(zip(word_dict.values(), word_dict.keys()))
text_data = helper.text_to_numbers(texts, word_dict)
valid_data = [word_dict[x] for x in valid_words]
# build model
print('Creating Model')
embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1., 1.))
doc_embeddings = tf.Variable(tf.random_uniform([vocabulary_size, doc_embedding_size], -1., 1.))
nce_weight = tf.Variable(tf.truncated_normal([vocabulary_size, concatenated_size],
stddev=1.0 / np.sqrt(concatenated_size)))
nce_bias = tf.Variable(tf.zeros([vocabulary_size]))
x_input = tf.placeholder(shape=[batch_size, window_size+1], dtype=tf.int32)
y_input = tf.placeholder(shape=[batch_size, 1], dtype=tf.int32)
valid_input = tf.constant(valid_data, dtype=tf.int32)
doc_indices = tf.slice(x_input, [0, window_size], [batch_size, 1])
embed = tf.zeros([batch_size, embedding_size])
for i in range(window_size):
embed += tf.nn.embedding_lookup(embeddings, x_input[:, i])
doc_embed = tf.nn.embedding_lookup(doc_embeddings, doc_indices)
final_embed = tf.concat(axis=1, values=[embed, tf.squeeze(doc_embed)])
loss = tf.reduce_mean(tf.nn.nce_loss(weights=nce_weight,
biases=nce_bias,
labels=y_input,
inputs=final_embed,
num_classes=vocabulary_size,
num_sampled=num_sampled))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=model_learning_rate)
train_step = optimizer.minimize(loss)
init = tf.global_variables_initializer()
sess.run(init)
saver = tf.train.Saver({"embeddings": embeddings, "doc_embeddings": doc_embeddings})
# validate test
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keepdims=True))
norm_embeddings = embeddings/norm
valid_embed = tf.nn.embedding_lookup(norm_embeddings, valid_input)
similarity = tf.matmul(valid_embed, norm_embeddings, transpose_b=True)
# train model
print('Starting Training')
for i in range(generations):
x_data, y_data = helper.generate_batch_data(text_data, batch_size,
window_size, method='doc2vec')
feed_dict = {x_input: x_data, y_input: y_data}
sess.run(train_step, feed_dict=feed_dict)
if (i+1) % print_loss_every == 0:
print('Loss at step {} : {}'.format(i + 1, sess.run(loss, feed_dict=feed_dict)))
if (i+1) % print_valid_every == 0:
top_k = 5
sim = sess.run(similarity, feed_dict=feed_dict)
for k in range(len(valid_words)):
sim_indices = (-sim[k, :]).argsort()[1:top_k+1]
log_str = "Nearest to {}:".format(word_dict_rev[valid_data[k]])
for j in range(top_k):
log_str = "{} {},".format(log_str, word_dict_rev[sim_indices[j]])
print(log_str)
if (i+1) % save_embeddings_every == 0:
save_path = os.path.join(data_folder_name, 'movie_vocab.pkl')
model_checkpoint_path = os.path.join(os.getcwd(), data_folder_name, 'doc2vec_movie_embeddings.ckpt')
saver.save(sess, model_checkpoint_path)
with open(save_path, 'wb') as f:
pickle.dump(word_dict, f)
print('Model saved in file: {}'.format(save_path))