-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcnn_nlp_tfrecord.py
250 lines (211 loc) · 10.6 KB
/
cnn_nlp_tfrecord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import helper
import tensorflow as tf
import numpy as np
from tensorflow.python.framework import ops
from nltk.corpus import stopwords
import pickle
import os
ops.reset_default_graph()
data_folder_name = 'temp'
# tfrecord_name = 'movie_text2num.tfrecord'
tfrecord_train_name = 'movie_text2num_train.tfrecord'
tfrecord_test_name = 'movie_text2num_test.tfrecord'
ckpt_name = 'cbowgram_movie_embeddings.ckpt'
save_ckpt_name = 'movie_emo_classifier_cnn_adam.ckpt'
vocab_name = 'movie_vocab.pkl'
if not os.path.exists(data_folder_name):
os.makedirs(data_folder_name)
model_checkpoint_path = os.path.join(data_folder_name, ckpt_name)
with open(os.path.join(data_folder_name, vocab_name), 'rb') as f:
word_dict = pickle.load(f)
sess = tf.Session()
batch_size = 500
test_batch_size = 2000
embedding_size = 200
vocabulary_size = len(word_dict)
n_gram = 2
num_channels = 1
conv_features = 64
sentence_size = 32
generations = 2000
learning_rate = 0.0005
# load and generate data
stops = stopwords.words('english')
valid_words = ['love', 'hate', 'happy', 'sad', 'man', 'woman']
# load movie review data
texts, target = helper.load_movie_data()
# normalize data
texts = helper.normalize_text(texts, stops)
target = [target[ix] for ix, x in enumerate(texts) if len(x.split()) > 2]
texts = [x for x in texts if len(x.split()) > 2]
texts = helper.text_to_numbers(texts, word_dict)
max_len = max([len(x) for x in texts])
embeddings = tf.Variable(tf.truncated_normal([vocabulary_size, embedding_size], stddev=0.1))
saver = tf.train.Saver({"embeddings": embeddings})
saver.restore(sess, model_checkpoint_path)
def write_binary(tf_record_name, texts_, target_):
writer = tf.python_io.TFRecordWriter(os.path.join(data_folder_name, tf_record_name))
for it, text in enumerate(texts_):
example = tf.train.Example(
features=tf.train.Features(
feature={
"text": tf.train.Feature(int64_list=tf.train.Int64List(value=text)),
"label": tf.train.Feature(int64_list=tf.train.Int64List(value=[target_[it]]))}
)
)
serialized = example.SerializeToString()
writer.write(serialized)
writer.close()
def __parse_function(serial_exmp):
features = tf.parse_single_example(serial_exmp, features={"text": tf.VarLenFeature(tf.int64),
"label": tf.FixedLenFeature([], tf.int64)})
text = tf.sparse_tensor_to_dense(features["text"])
label = tf.cast(features["label"], tf.int32)
return text, label
def get_dataset(tf_record_name):
dataset = tf.data.TFRecordDataset(os.path.join(data_folder_name, tf_record_name))
return dataset.map(__parse_function)
# train_indices = np.sort(np.random.choice(len(target), round(0.8 * len(target)), replace=False))
# test_indices = np.sort(np.array(list(set(range(len(target))) - set(train_indices))))
# texts_train = np.array([x for ix, x in enumerate(texts) if ix in train_indices])
# texts_test = np.array([x for ix, x in enumerate(texts) if ix in test_indices])
# target_train = np.array([x for ix, x in enumerate(target) if ix in train_indices])
# target_test = np.array([x for ix, x in enumerate(target) if ix in test_indices])
# write_binary(tfrecord_name, texts, target)
# write_binary('movie_text2num_train.tfrecord', texts_train, target_train)
# write_binary('movie_text2num_test.tfrecord', texts_test, target_test)
# exit()
train_data_set = get_dataset(tfrecord_train_name)
train_data = train_data_set.shuffle(5000).padded_batch(batch_size, padded_shapes=([max_len], [])).repeat()
train_iter = train_data.make_one_shot_iterator()
train_handle = sess.run(train_iter.string_handle())
test_data_set = get_dataset(tfrecord_test_name)
test_data = test_data_set.padded_batch(test_batch_size, padded_shapes=([max_len], [])).repeat()
test_iter = test_data.make_one_shot_iterator()
test_handle = sess.run(test_iter.string_handle())
# create placeholder
handle = tf.placeholder(tf.string, shape=[], name='handle')
iterator = tf.data.Iterator.from_string_handle(handle, train_data.output_types, train_data.output_shapes)
x_, y_ = iterator.get_next()
x_embed = tf.nn.embedding_lookup(embeddings, x_)
print(tf.shape(x_embed))
y_ = tf.cast(tf.expand_dims(y_, 1), tf.float32)
# build model
def build_model_cnn(x_in):
x_in = tf.expand_dims(x_in, 3)
conv1_weight = tf.Variable(tf.truncated_normal(shape=[n_gram, embedding_size, num_channels, conv_features],
stddev=0.05, dtype=tf.float32))
conv1_bias = tf.Variable(tf.zeros(shape=[conv_features], dtype=tf.float32))
full1_weight = tf.Variable(tf.truncated_normal(shape=[conv_features, sentence_size], dtype=tf.float32))
full1_bais = tf.Variable(tf.truncated_normal(shape=[1, sentence_size], dtype=tf.float32))
W_weight = tf.Variable(tf.truncated_normal(shape=[sentence_size, 1], dtype=tf.float32))
b_bais = tf.Variable(tf.truncated_normal(shape=[1, 1], dtype=tf.float32))
conv1 = tf.nn.conv2d(x_in, conv1_weight, strides=[1, 1, 1, 1], padding='VALID')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_bias))
# max_pool = tf.reduce_max(relu1, axis=1, keepdims=True)
max_pool = tf.nn.max_pool(relu1, [1, max_len+1-n_gram, 1, 1], [1, 1, 1, 1], padding="VALID")
full1_input = tf.reshape(max_pool, [-1, conv_features])
sentence_vec_output = tf.nn.relu(tf.add(tf.matmul(full1_input, full1_weight), full1_bais))
model_output_ = tf.add(tf.matmul(sentence_vec_output, W_weight), b_bais)
return model_output_
def build_model_sentence2vec_avg(x_in):
embed_avg = tf.reduce_mean(x_in, 1)
A = tf.Variable(tf.random_normal(shape=[embedding_size, 1]))
b = tf.Variable(tf.random_normal(shape=[1, 1]))
# Declare logistic model (sigmoid in loss function)
model_output_ = tf.add(tf.matmul(embed_avg, A), b)
return model_output_
class Rnn_Model():
def __init__(self, x_in):
self.hidden_size = 64
self.class_size = 1
self.x_in = x_in
with tf.variable_scope('weight') as scope:
h_w = tf.get_variable(name="h_w", shape=[self.hidden_size, self.hidden_size], dtype=tf.float32)
x_w = tf.get_variable(name="x_w", shape=[embedding_size, self.hidden_size], dtype=tf.float32)
h_b = tf.get_variable(name="h_b", shape=[self.hidden_size], dtype=tf.float32)
y_w = tf.get_variable(name="y_w", shape=[self.hidden_size, self.class_size], dtype=tf.float32)
y_b = tf.get_variable(name="y_b", shape=[self.class_size], dtype=tf.float32)
# shape of x_in = [batch size, embedding]
def rnn_cell(x_in_, h_in=tf.zeros(shape=[1, self.hidden_size], dtype=tf.float32)):
h_out = tf.add(tf.add(tf.matmul(h_in, h_w), h_b), tf.matmul(x_in_, x_w))
h_out = tf.tanh(h_out)
return h_out
def rnn(x_in_):
x_rnn = tf.split(axis=1, num_or_size_splits=max_len, value=x_in_)
x_rnn = [tf.squeeze(x, [1]) for x in x_rnn]
state = []
for i in range(len(x_rnn)):
if i == 0:
state.append(rnn_cell(x_rnn[i]))
else:
state.append(rnn_cell(x_rnn[i], h_in=state[i - 1]))
last_o = state[-1]
return state, last_o
_, last_output = rnn(self.x_in)
self.model_output = tf.add(tf.matmul(last_output, y_w), y_b)
class LSTM_Model():
def __init__(self, x_in_):
self.embedding_size = embedding_size
self.rnn_size = 32
self.batch_size = batch_size
self.training_seq_len = max_len
self.vocab_size = 1
# self.lstm_cell = tf.contrib.rnn.BasicLSTMCell(self.rnn_size)
self.lstm_cell = tf.contrib.rnn.LSTMCell(name='basic_lstm_cell', num_units=self.rnn_size)
self.initial_state = self.lstm_cell.zero_state(self.batch_size, tf.float32)
with tf.variable_scope('lstm_vars'):
# Softmax Output Weights
W = tf.get_variable('W', [self.rnn_size, self.vocab_size], tf.float32, tf.random_normal_initializer())
b = tf.get_variable('b', [self.vocab_size], tf.float32, tf.constant_initializer(0.0))
output, final_state = tf.nn.dynamic_rnn(self.lstm_cell, x_in_, dtype=tf.float32)
output = tf.nn.dropout(output, 0.5)
final_layer = output[:, -1, :]
prev_transformed = tf.matmul(final_layer, W) + b
# Get the index of the output (also don't run the gradient)
# self.model_output = tf.stop_gradient(prev_transformed)
self.model_output = prev_transformed
# model_output = build_model_cnn(x_embed)
model_output = LSTM_Model(x_embed).model_output
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=model_output, labels=y_))
optimizer = tf.train.AdamOptimizer(learning_rate)
train_step = optimizer.minimize(loss)
# optimizer = tf.train.GradientDescentOptimizer(learning_rate)
# gradients, _ = tf.clip_by_global_norm(tf.gradients(loss, tf.trainable_variables()), 4.5)
# train_step = optimizer.apply_gradients(zip(gradients, tf.trainable_variables()))
prediction = tf.round(tf.sigmoid(model_output), name='predict')
predictions_correct = tf.cast(tf.equal(prediction, y_), tf.float32)
accuracy = tf.reduce_mean(predictions_correct, name='accuracy')
init = tf.global_variables_initializer()
sess.run(init)
print('Starting Logistic Doc2Vec Model Training')
train_loss = []
test_loss = []
train_acc = []
test_acc = []
i_data = []
max_acc = 0
saver_meta = tf.train.Saver(max_to_keep=1)
for i in range(generations):
feed_dict = {handle: train_handle}
sess.run(train_step, feed_dict=feed_dict)
if (i + 1) % 50 == 0:
i_data.append(i + 1)
test_feed_dict = {handle: test_handle}
train_loss_temp = sess.run(loss, feed_dict=feed_dict)
train_loss.append(train_loss_temp)
test_loss_temp = sess.run(loss, feed_dict=test_feed_dict)
test_loss.append(test_loss_temp)
train_acc_temp = sess.run(accuracy, feed_dict=feed_dict)
train_acc.append(train_acc_temp)
test_acc_temp = sess.run(accuracy, feed_dict=test_feed_dict)
test_acc.append(test_acc_temp)
acc_and_loss = [i + 1, train_loss_temp, test_loss_temp, train_acc_temp, test_acc_temp]
acc_and_loss = [np.round(x, 2) for x in acc_and_loss]
print('Generation # {}. Train Loss (Test Loss): '
'{:.2f} ({:.2f}). Train Acc (Test Acc): {:.2f} ({:.2f})'.format(*acc_and_loss))
# print(sess.run([tf.squeeze(prediction), tf.squeeze(y_)], feed_dict=test_feed_dict))
if (i+1) >= 1000 and max_acc <= test_acc_temp:
max_acc = test_acc_temp
saver_meta.save(sess, os.path.join(data_folder_name, save_ckpt_name))
print('model saved')