-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
328 lines (293 loc) · 12.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import os
import gc
import torch
from torch.autograd import Variable
from datetime import datetime
from data.dataloader import get_loader, BrainDataset
from data.dataset import Dataset
import torch.utils.data as datas
from utils.utils import clip_gradient, adjust_lr, AvgMeter
from utils.metrics import dice, m_iou
import torch.nn.functional as F
from Net.CM_MLP import CM_MLP
from utils.lookahead import Lookahead
os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1, 2, 3, 4, 5, 6, 7, 8'
device = torch.device('cuda', 2)
best_train = 0.0
def structure_loss(pred, mask):
"""
:param pred: Prediction
:param mask: Ground Truth
:return: Loss and IoU
"""
weit = 1 + 5 * torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15) - mask)
wbce = F.binary_cross_entropy_with_logits(pred, mask, reduce=None, reduction='mean')
pred = torch.sigmoid(pred)
inter = (pred * mask)
union = (pred + mask)
wiou = 1 - ((inter * weit).sum(dim=(2, 3)) + 1) / (
(union * weit).sum(dim=(2, 3)) - (inter * weit).sum(dim=(2, 3)) + 1)
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
inter = (pred * mask)
union = (pred + mask)
iou = (inter.sum(dim=(2, 3)) + 1) / ((union).sum(dim=(2, 3)) - inter.sum(dim=(2, 3)) + 1)
return (wbce+wiou).mean(), iou.mean()
def valid(model, val_data_loader, classes):
model.eval()
test_loader = val_data_loader
b = 0.0
c = 0.0
print('[test_size]', len(test_loader))
with torch.no_grad():
for i, data in enumerate(test_loader, start=1):
image, gt = data
image = image.cuda()
res4, res3, res2, res1 = model(image)
res = res4
res = F.upsample(res, size=(gt.shape[2], gt.shape[3]), mode='bilinear', align_corners=False)
res = res.sigmoid()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
b += dice(res, gt)
c += m_iou(res, gt)
return b / len(test_loader), c / len(test_loader)
def train(data_loader, model, optimizer, epoch, t_size, clip, batch_size, t_epoch, val_dataloader, classes, param):
model.train()
global best_train
b_loss_record, loss_record1, loss_record2, loss_record3, loss_record4, b_iou_record = AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter()
for i, data in enumerate(data_loader, start=1):
optimizer.zero_grad()
images, labels = data
images = Variable(images).cuda()
labels = Variable(labels).cuda()
lateral_map_4, lateral_map_3, lateral_map_2, lateral_map_1 = model(images)
loss4, iou4 = structure_loss(lateral_map_4, labels)
loss3, iou3 = structure_loss(lateral_map_3, labels)
loss2, iou2 = structure_loss(lateral_map_2, labels)
loss1, iou1 = structure_loss(lateral_map_1, labels)
loss = loss1 + loss2 + loss3 + loss4
iou = (iou1 + iou2 + iou3 + iou4) / 4
# ------ backward ------
loss.backward()
clip_gradient(optimizer, clip)
optimizer.step()
# ------ recording loss ------
loss_record4.update(loss4.data, batch_size, dtype=0)
loss_record3.update(loss3.data, batch_size, dtype=0)
loss_record2.update(loss2.data, batch_size, dtype=0)
loss_record1.update(loss1.data, batch_size, dtype=0)
b_iou_record.update(iou.data, batch_size, dtype=1)
b_loss_record.update(loss.data, batch_size, dtype=0)
print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}],loss:{:0.4f}, iou:{:0.4f}'
' lateral-4: wiou4: {:0.4f}], lateral-3: wiou3: {:0.4f}], lateral-2: wiou2:{:0.4f}], lateral-1: wiou1: {:0.4}]'.
format(datetime.now(), epoch, t_epoch, i, total_step, b_loss_record.show(dtype=0),
b_iou_record.show(dtype=1),
loss_record4.show(dtype=0), loss_record3.show(dtype=0), loss_record2.show(dtype=0),
loss_record1.show(dtype=0))
)
record.update(b_loss_record.show(dtype=0), dtype=0)
record.update(b_iou_record.show(dtype=1), dtype=1)
'''Reset all recoder'''
b_iou_record.reset()
loss_record4.reset()
loss_record3.reset()
loss_record2.reset()
loss_record1.reset()
b_loss_record.reset()
save_path = param['model_save_path']
model_path = param['model_path']
os.makedirs(save_path, exist_ok=True)
'''Validation'''
meandice, mIOU = valid(model, val_dataloader, classes)
print('Epoch [{:03d}/{:03d}], mean dice:{:0.4f}, mean IOU:{:0.4f}'.format(epoch, t_epoch, meandice, mIOU))
record.update(meandice, dtype=2)
'''Log'''
log_dir = param['log_dir']
best_log = param['best_log']
if not os.path.isfile(best_log):
f = open(best_log, 'a')
f.write('0')
f.close()
fp = open(log_dir, 'a')
fp.write(str(meandice) + '\n')
fp.close()
'''Saving snapshot when current dice larger than before'''
if meandice > best_train:
fp = open(best_log, 'w')
fp.write(str(meandice))
fp.close()
fp = open(best_log, 'r')
best_train = meandice
fp.close()
torch.save(model.state_dict(), model_path)
print('[Saving best Snapshot:](%d / %d)' % (epoch, t_epoch), ' Mean dice:', meandice, '[best:]', best_train)
if __name__ == '__main__':
torch.cuda.set_device(device)
torch.backends.cudnn.enabled = False
batch_size = 6
fold = 5
Epoch = 60
clip = 0.5
learning_rate = 1e-4
decay_rate = 0.1
decay_epoch = 15
train_size = 512
ill_param = {
'data_path': '/data/illness',
'fig_path': './result/illness_fig',
'fig_path_arg': './result/illness_fig/',
'log_base_path': './log/illness',
'log_dir': './log/illness/log.txt',
'best_log': './log/illness/best.txt',
'model_save_path': './result/illness/',
'model_path': './result/illness/caraNet.pth',
'result_path': './result/illness/figure/',
'debug_path': './log/debug/illness',
'classes': 2
}
ill_region_param = {
'data_path': '/data/illness_region',
'fig_path': './result/illness_region_fig',
'fig_path_arg': './result/illness_region_fig/',
'log_base_path': './log/illness_region',
'log_dir': './log/illness_region/log.txt',
'best_log': './log/illness_region/best.txt',
'model_save_path': './result/illness_region/',
'model_path': './result/illness_region/caraNet.pth',
'result_path': './result/illness_region/figure/',
'debug_path': './log/debug/illness_region',
'classes': 15
}
skull_param = {
'data_path': '/data/skull_SH_new/',
'fig_path': './result/compare/train/mynet/skull_fig',
'fig_path_arg': './result/compare/train/mynet/skull_fig/',
'log_base_path': './log/skull',
'log_dir': './log/skull/log.txt',
'best_log': './log/skull/best.txt',
'model_save_path': './result/skull/',
'model_path': './result/skull/caraNet.pth',
'result_path': './result/skull/figure/',
'debug_path': './log/debug/Skull',
'classes': 1
}
skull_param_out = {
'data_path': '/data/skull_SH_EP_new',
'fig_path': './result/skull_SH_EP_fig',
'fig_path_arg': './result/skull_SH_EP_fig/',
'log_base_path': './log/skull_SE',
'log_dir': './log/skull_SE/log_SE.txt',
'best_log': './log/skull_SE/best_SE.txt',
'model_save_path': './result/skull_SE/',
'model_path': './result/skull_SE/caraNet_SE.pth',
'result_path': './result/skull_SE/figure_out/',
'debug_path': './log/debug/SH_EP',
'classes': 2
}
kvasir_param = {
'data_path': '/data/kvasir/',
'fig_path': './result/compare/train/mynet/kvasir_fig',
'fig_path_arg': './result/compare/train/mynet/kvasir_fig/',
'log_base_path': './log/kvasir',
'log_dir': './log/kvasir/log.txt',
'best_log': './log/kvasir/best.txt',
'model_save_path': './result/kvasir/',
'model_path': './result/kvasir/caraNet.pth',
'result_path': './result/kvasir/figure/',
'debug_path': './log/debug/kvasir',
'classes': 1
}
cvc_param = {
'data_path': '/data/CVC-Clinic/',
'fig_path': './result/compare/train/mynet/CVC-Clinic_fig/',
'fig_path_arg': './result/compare/train/mynet/CVC-Clinic_fig/',
'log_base_path': './log/CVC-Clinic',
'log_dir': './log/CVC-Clinic/log.txt',
'best_log': './log/CVC-Clinic/best.txt',
'model_save_path': './result/CVC-Clinic/',
'model_path': './result/CVC-Clinic/caraNet.pth',
'result_path': './result/CVC-Clinic/figure/',
'debug_path': './log/debug/CVC-Clinic',
'classes': 1
}
polyp_param = {
'data_path': '/data/train_set/TrainSet/',
'fig_path': './result/compare/train/mynet/Polyp_fig/',
'fig_path_arg': './result/compare/train/mynet/Polyp_fig/',
'log_base_path': './log/Polyp',
'log_dir': './log/Polyp/log.txt',
'best_log': './log/Polyp/best.txt',
'model_save_path': './result/Polyp/',
'model_path': './result/Polyp/mynet.pth',
'result_path': './result/Polyp/figure/',
'debug_path': './log/debug/Polyp',
'classes': 1
}
glas_param = {
'data_path': '/data/GLAS/train/',
'fig_path': './result/glas_fig',
'fig_path_arg': './result/glas_fig/',
'log_base_path': './log/glas',
'log_dir': './log/glas/log.txt',
'best_log': './log/glas/best.txt',
'model_save_path': './result/glas/',
'model_path': './result/glas/caraNet.pth',
'result_path': './result/glas/figure/',
'debug_path': './log/debug/glas',
'classes': 1
}
bowl_param = {
'data_path': '/data/2018_data_science_bowl/train/',
'fig_path': './result/bowl_fig',
'fig_path_arg': './result/bowl_fig/',
'log_base_path': './log/bowl',
'log_dir': './log/bowl/log.txt',
'best_log': './log/bowl/best.txt',
'model_save_path': './result/bowl/',
'model_path': './result/bowl/caraNet.pth',
'result_path': './result/bowl/figure/',
'debug_path': './log/debug/bowl',
'classes': 1
}
param = skull_param
classes = param['classes']
model = CM_MLP(classes=classes).cuda()
fig_path = param['fig_path']
fig_path_args = param['fig_path_arg']
log_base_path = param['log_base_path']
if not os.path.exists(log_base_path):
os.makedirs(log_base_path, exist_ok=True)
if not os.path.exists(fig_path):
os.makedirs(fig_path, exist_ok=True)
optimizer = Lookahead(torch.optim.Adam(model.parameters(), learning_rate, eps=1e-5), la_steps=3, la_alpha=0.5)
data_root = param['data_path']
dataset = Dataset(data_root, True)
t_train_list = dataset.get_all_list()
test_loader = get_loader(data_root=data_root, batch_size=batch_size, dtype='test', size=train_size, augmentations=False)
record = AvgMeter()
for epoch in range(1, Epoch+1):
length = len(t_train_list) // fold
start = length * (epoch % fold)
val_list = [t_train_list[x % len(t_train_list)] for x in range(start, start + length)]
train_list = list(set(t_train_list).difference(set(val_list)))
train_dataset = BrainDataset(train_list, 'train', train_size, dataset.get_path(), True)
val_dataset = BrainDataset(val_list, 'val', train_size, dataset.get_path(), False)
train_loader = datas.DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=0,
drop_last=True
)
total_step = len(train_loader)
val_loader = datas.DataLoader(
dataset=val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=0,
drop_last=True
)
adjust_lr(optimizer, learning_rate, epoch, decay_rate, decay_epoch)
torch.cuda.empty_cache()
gc.collect()
train(train_loader, model, optimizer, epoch, train_size, clip, batch_size, Epoch, val_loader, classes, param)
record.save(fig_path_args, 'args.jpg')