-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_constrained_model.py
423 lines (330 loc) · 15.6 KB
/
train_constrained_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import os, json
import h5py
import numpy as np
from acronym_tools import load_mesh, load_grasps, create_gripper_marker
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
import torch
import trimesh
import mesh2sdf
from scipy.spatial.transform import Rotation as R
from dataloader.constrained_loader import AcronymAndSDFDataset
from tqdm import tqdm
from positional_embeddings import PositionalEmbedding
import gc
from torch.optim.lr_scheduler import ExponentialLR, ReduceLROnPlateau
# from model import NoiseScheduler, Grasp_Diffusion
class NoiseScheduler():
def __init__(self,
device,
num_timesteps=1000,
beta_start=0.0001,
beta_end=0.02,
beta_schedule="linear"):
self.device = device
self.num_timesteps = num_timesteps
if beta_schedule == "linear":
self.betas = torch.linspace(
beta_start, beta_end, num_timesteps, dtype=torch.float32)
elif beta_schedule == "quadratic":
self.betas = torch.linspace(
beta_start ** 0.5, beta_end ** 0.5, num_timesteps, dtype=torch.float32) ** 2
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, axis=0)
self.alphas_cumprod_prev = F.pad(
self.alphas_cumprod[:-1], (1, 0), value=1.)
# required for self.add_noise
self.sqrt_alphas_cumprod = self.alphas_cumprod ** 0.5
self.sqrt_one_minus_alphas_cumprod = (1 - self.alphas_cumprod) ** 0.5
# required for reconstruct_x0
self.sqrt_inv_alphas_cumprod = torch.sqrt(1 / self.alphas_cumprod)
self.sqrt_inv_alphas_cumprod_minus_one = torch.sqrt(
1 / self.alphas_cumprod - 1)
# required for q_posterior
self.posterior_mean_coef1 = self.betas * torch.sqrt(self.alphas_cumprod_prev) / (1. - self.alphas_cumprod)
self.posterior_mean_coef2 = (1. - self.alphas_cumprod_prev) * torch.sqrt(self.alphas) / (1. - self.alphas_cumprod)
self.betas = self.betas.to(device)
self.alphas = self.alphas.to(device)
self.alphas_cumprod = self.alphas_cumprod.to(device)
self.sqrt_alphas_cumprod = self.sqrt_alphas_cumprod.to(device)
self.sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod.to(device)
self.sqrt_inv_alphas_cumprod = self.sqrt_inv_alphas_cumprod.to(device)
self.posterior_mean_coef1 = self.posterior_mean_coef1.to(device)
self.posterior_mean_coef2 = self.posterior_mean_coef2.to(device)
self.alphas_cumprod_prev = self.alphas_cumprod_prev.to(device)
def reconstruct_x0(self, x_t, t, noise):
t = t.to(self.device)
x_t = x_t.to(self.device)
noise = noise.to(self.device)
s1 = self.sqrt_inv_alphas_cumprod[t.to("cpu")]
s2 = self.sqrt_inv_alphas_cumprod_minus_one[t.to("cpu")]
# s1 = s1.reshape(-1, 1)
# s2 = s2.reshape(-1, 1)
return s1.to(self.device) * x_t - s2.to(self.device) * noise
def q_posterior(self, x_0, x_t, t):
x_0, x_t, t = x_0.to(self.device), x_t.to(self.device), t.to(self.device)
s1 = self.posterior_mean_coef1[t]
s2 = self.posterior_mean_coef2[t]
# s1 = s1.reshape(-1, 1)
# s2 = s2.reshape(-1, 1)
mu = s1 * x_0 + s2 * x_t
return mu
def get_variance(self, t):
t = t.to("cpu")
if t[0].sum() == 0:
return torch.zeros(t.shape)
variance = self.betas[t] * (1. - self.alphas_cumprod_prev[t]) / (1. - self.alphas_cumprod[t])
variance = variance.clip(1e-20)
return variance
def step(self, model_output, timestep, sample):
model_output, timestep, sample = model_output.to(self.device), timestep.to(self.device), sample.to(self.device)
t = timestep
pred_original_sample = self.reconstruct_x0(sample, t, model_output)
pred_prev_sample = self.q_posterior(pred_original_sample, sample, t)
variance = torch.zeros(t.shape)
if t[0] > 0:
noise = torch.randn_like(model_output)
variance = (self.get_variance(t) ** 0.5) * noise
pred_prev_sample = pred_prev_sample + variance.to(self.device)
return pred_prev_sample
def add_noise(self, x_start, x_noise, timesteps):
x_start, x_noise, timesteps = x_start.to(self.device), x_noise.to(self.device), timesteps.to(self.device)
s1 = self.sqrt_alphas_cumprod[timesteps]
s2 = self.sqrt_one_minus_alphas_cumprod[timesteps]
s1 = s1.reshape(-1, 1)
s2 = s2.reshape(-1, 1)
# s1 = s1.unsqueeze(0)
# s2 = s2.unsqueeze(0)
return s1 * x_start + s2 * x_noise
def __len__(self):
return self.num_timesteps
class Block(nn.Module):
def __init__(self, size: int):
super().__init__()
self.ff = nn.Linear(size, size)
self.act = nn.ReLU()
# self.dropout = nn.Dropout(p=0.1)
def forward(self, x: torch.Tensor):
return x + self.act(self.ff(x))
class Block_2(nn.Module):
def __init__(self, in_size: int, out_size: int):
super().__init__()
self.ff = nn.Linear(in_size, out_size)
self.act = nn.ReLU()
# self.dropout = nn.Dropout(p=0.1)
def forward(self, x: torch.Tensor):
return self.act(self.ff(x))
class Conv3DModel(nn.Module):
"""
Model to create a latent representation of the object
3 set layers with variable feature map sized
-- __init__()
:param in_channels -> number of input channels, for mesh default is 1
:param level_channels -> array with desired number of feature map sizes for each layer
-- forward()
:param input -> input Tensor to be convolved
:return -> Tensor
"""
def __init__(self, level_channels=[8, 16, 32]) -> None:
super(Conv3DModel, self).__init__()
l1, l2, l3, l4 = level_channels[0], level_channels[1], level_channels[2], level_channels[3]
# Layer 1
self.conv1_1 = nn.Conv3d(in_channels=2, out_channels=l1, kernel_size=(3,3,3), padding=1)
self.bn1 = nn.BatchNorm3d(num_features=l1)
# self.conv1_2 = nn.Conv3d(in_channels=l1, out_channels=l1, kernel_size=(3,3,3), padding=1)
# self.depthwise = nn.Conv3d(in_channels=2, out_channels=l1, kernel_size=(3,3,3), padding=1, groups=2)
# self.pointwise = nn.Conv3d(in_channels=l1, out_channels=l1, kernel_size=1, padding=0, stride=1)
self.relu1 = nn.LeakyReLU()
self.pooling = nn.MaxPool3d(kernel_size=(2,2,2), stride=2)
# Layer 2
self.conv2 = nn.Conv3d(in_channels=l1, out_channels=l2, kernel_size=(3,3,3), padding=1)
self.bn2 = nn.BatchNorm3d(num_features=l2)
self.relu2 = nn.LeakyReLU()
# Layer 3
self.conv3_1 = nn.Conv3d(in_channels=l2, out_channels=l3, kernel_size=(3,3,3), padding=1)
self.bn3 = nn.BatchNorm3d(num_features=l3)
self.relu3 = nn.LeakyReLU()
# self.conv3_2 = nn.Conv3d(in_channels=l3, out_channels=l3, kernel_size=(3,3,3), padding=1)
# self.bn_bool = False
self.conv4_1 = nn.Conv3d(in_channels=l3, out_channels=l4, kernel_size=(3,3,3), padding=1)
self.bn4 = nn.BatchNorm3d(num_features=l4)
self.relu4 = nn.LeakyReLU()
# self.conv4_2 = nn.Conv3d(in_channels=l4, out_channels=l4, kernel_size=(3,3,3), padding=1)
def forward(self, input):
# res = self.relu(self.bn1(self.conv1_1(input)))
res = self.relu1(self.conv1_1(input))
res = self.pooling(res)
# print("After 1st layer: ", res.shape)
# res = self.relu(self.bn2(self.conv2(res)))
res = self.relu2(self.conv2(res))
res = self.pooling(res)
# print("After 2nd layer: ", res.shape)
res = self.relu3(self.conv3_1(res))
# res = self.relu(self.conv3_2(res))
# res = self.relu(self.bn3(self.conv3_1(res)))
res = self.pooling(res)
# print("After 3rd layer: ", out.shape)
out = self.relu4(self.conv4_1(res))
# out = self.relu(self.bn4(self.conv4_1(res)))
# res = self.relu(self.conv4_2(res))
# out = self.pooling(out)
return out
class Linear_Block(nn.Module):
def __init__(self, input_dim) -> None:
super(Linear_Block, self).__init__()
layers = []
layers.append(Block_2(input_dim, 2048))
layers.append(Block(2048))
layers.append(Block(2048))
layers.append(nn.Linear(2048, 7))
self.linear = nn.Sequential(*layers)
def forward(self, input):
return self.linear(input)
class Grasp_Diffusion(nn.Module):
"""
The Grasp Diffusion model conditioned on a 3d voxel grid
-- __init__()
:param in_channels -> number of input channels
:param num_classes -> specifies the number of output channels or masks for different classes
:param level_channels -> the number of channels at each level (count top-down)
:param bottleneck_channel -> the number of bottleneck channels
:param device -> the device on which to run the model
-- forward()
:param input ->
1. object_input -> voxel grid representation of size (32, 32, 32)
2. grasp_input -> tensor containing information of septernion (position + quaternion) of size (1, 7)
3. timsteps -> tensor containing random timestep of size (1,)
:return -> Tensor
"""
def __init__(self, device, time_emb=64, level_channels=[8, 16, 32, 64]) -> None:
super(Grasp_Diffusion, self).__init__()
self.device = device
self.conv_model = Conv3DModel(level_channels=level_channels)
self.conv_model = self.conv_model.to(device)
self.time_mlp = PositionalEmbedding(time_emb, "sinusoidal")
grasp_emb_size = 64
self.input_mlp = PositionalEmbedding(grasp_emb_size, "sinusoidal", scale=25.0)
self.scale_dim = 64
self.scale_embedding = PositionalEmbedding(self.scale_dim, "sinusoidal")
self.scale_embedder = Block(self.scale_dim)
latent_mesh_repr_size = level_channels[-1] * 4**3
grasp_repr_size = 7 * grasp_emb_size
# concat_size = len(self.time_mlp.layer) + hidden_dim_mesh + grasp_repr_size
concat_size = time_emb + latent_mesh_repr_size + grasp_repr_size + self.scale_dim
# self.multihead_attn = nn.MultiheadAttention(embed_dim=latent_mesh_repr_size, num_heads=2)
self.joint_mlp = Linear_Block(concat_size).to(device)
def forward(self, object_input, grasp_input, timesteps, scale):
device = self.device
out = self.conv_model(object_input)
mesh_repr_flattened = nn.Flatten(1)(out)
time_ = self.time_mlp(timesteps.to("cpu"))
time_ = time_.float().to(device)
x_emb = self.input_mlp(grasp_input.to("cpu"))
x_emb = nn.Flatten(1)(x_emb)
x_emb = x_emb.float().to(device)
scale_emb = self.scale_embedding(scale.to("cpu")).float()
scale_emb = self.scale_embedder(scale_emb.to(device))
scale_emb = scale_emb.float().to(device)
x = torch.cat((x_emb, time_, mesh_repr_flattened.float().to(device), scale_emb), dim=-1)
x = self.joint_mlp(x)
return x
# Enter directory path of CONG dataset
data_dir = "/home/username/data/v3_constrained/"
grasp_dict_file = os.path.join(data_dir, 'constrained_grasps_split.json')
grasp_data = json.load(open(grasp_dict_file, "r"))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Device used for training: ",device)
print(" ----------- \n")
print("Loading dataset ...")
train_dataset = AcronymAndSDFDataset(grasp_data, loader_type="train", data_dir=data_dir)
batch_size_num = 32
# , pin_memory=True, pin_memory_device="cuda"
train_dataloader = DataLoader(train_dataset, batch_size=batch_size_num, shuffle=True, num_workers=4)
print("Length of Dataset: ", len(train_dataset), " Number of Batches: ", len(train_dataloader))
print(" ----------- \n")
noise_scheduler = NoiseScheduler(device, num_timesteps=1000)
model = Grasp_Diffusion(device, time_emb=64, level_channels=[16, 32, 64, 64])
model.to(device)
print()
from torchinfo import summary
input_size1 = torch.Size([32, 2, 32, 32, 32])
input_size2 = torch.Size([32, 7])
input_size3 = torch.Size([32])
input_size4 = torch.Size([32])
# Assuming model is your model instance and it takes three inputs
print(summary(model, input_size=[(input_size1), (input_size2), (input_size3), (input_size4)]))
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4)
PATH = "/home/username/constrained_training/training/checkpoints/v1/constrained_model.pt"
model.load_state_dict(torch.load(PATH)['model_state_dict'])
optimizer.load_state_dict(torch.load(PATH)['optimizer_state_dict'])
# scheduler.load_state_dict(torch.load(PATH)['scheduler_state_dict'])
# global_step = 0
frames = []
losses = []
step_loss = []
global_step = torch.load(PATH)['step']
mid_time_losses = []
for param_group in optimizer.param_groups:
print("LEARNING RATE: ", param_group['lr'])
scheduler = ReduceLROnPlateau(optimizer, patience=1200, verbose=True, factor=0.85, min_lr=1e-7)
scheduler.load_state_dict(torch.load(PATH)['optimizer_state_dict'])
curr_epoch_num = 0
print("Starting Epoch number: ", curr_epoch_num)
with open("/home/username/constrained_training/training/checkpoints/v1/loss_step.json") as f:
step_loss = json.load(f)
print("Training model ...")
print(" ----------- \n")
model.train()
for epoch in range(10000):
print("EPOCH NUMBER: ", epoch)
print(" ----------- \n")
print(" ----------- \n")
temp_losses = []
# pbar = tqdm(train_dataloader)
for step, (Septernion, sdf, sdf_scale) in enumerate(tqdm(train_dataloader)):
optimizer.zero_grad()
noise = torch.randn(Septernion.shape)
timesteps = torch.randint(
0, noise_scheduler.num_timesteps, (Septernion.shape[0],)
).long()
sdf = sdf.to(device)
Septernion = Septernion.to(device)
noise = noise.to(device)
timesteps = timesteps.to(device)
noisy = noise_scheduler.add_noise(Septernion, noise, timesteps)
sdf_scale = sdf_scale.to(device)
noisy = noisy.to(device)
noise_pred = model(sdf, noisy, timesteps, sdf_scale)
loss = F.mse_loss(noise_pred, noise)
loss.backward(loss)
optimizer.step()
losses.append(loss.detach().item())
mid_time_losses.append(loss.detach().item())
if ((global_step % (1000//batch_size_num)) == 0 and global_step > 0):
val = np.mean(np.array(mid_time_losses))
print("Step: ", global_step, " Train Loss: ", val, 'learning rate:', optimizer.param_groups[0]['lr'])
scheduler.step(val)
print("\n")
mid_time_losses = []
step_loss.append(val)
# break;
if (global_step % (100000//batch_size_num) == 0 and global_step > 0):
PATH = os.path.join("/home/username/constrained_training/training/checkpoints/v1", "constrained_model.pt")
torch.save({
'step': global_step,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict':scheduler.state_dict(),
'loss': loss.detach().item(),
'epoch':epoch
}, PATH)
Loss_step_PATH = os.path.join("/home/username/constrained_training/training/checkpoints/v1", "loss_step.json")
with open(Loss_step_PATH, "w") as f:
json.dump(step_loss, f)
print("saved")
global_step += 1
# break;
gc.collect()
torch.cuda.empty_cache()