-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainer.py
35 lines (26 loc) · 1.02 KB
/
Trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from scipy import optimize
class Trainer:
def __init__(self, network):
self.network = network
self.i = 0
def callback_f(self, params):
self.network.set_params(params)
cost = self.network.cost_function(self.x, self.y)
self.J.append(cost)
# print(str(self.i)+"th Iteration Over: COst:"+str(cost))
self.i += 1
def cost_function_wrapper(self, params, x, y):
self.network.set_params(params)
return self.network.costs(x, y)
def train(self, x, y):
# Make an internal variable for the callback function:
self.x = x
self.y = y
# Make empty list to store costs:
self.J = []
params0 = self.network.get_params()
options = {'maxiter': 100, 'disp': False}
_res = optimize.minimize(self.cost_function_wrapper, params0, jac=True, method='CG', \
args=(x, y), options=options, callback=self.callback_f)
print("Finished")
self.network.set_params(_res.x)