-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathmodel.py
95 lines (81 loc) · 3.72 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from __future__ import print_function
from keras.layers import Conv1D, MaxPooling1D, Embedding
from keras.layers import Dense, Input, Flatten, Dropout, Merge, Activation
from keras.models import Model, Sequential
from keras.optimizers import Adadelta, RMSprop
def model_selector(args, embedding_matrix):
'''Method to select the model to be used for classification'''
if (args.model_name.lower() != 'self'):
return _predefined_model(args, embedding_matrix)
def _predefined_model(args, embedding_matrix):
'''function to use one of the predefined models (based on the paper)'''
(filtersize_list, number_of_filters_per_filtersize, pool_length_list,
dropout_list, optimizer, use_embeddings, embeddings_trainable) \
= _param_selector(args)
if (use_embeddings):
embedding_layer = Embedding(args.nb_words + 1,
args.embedding_dim,
weights=[embedding_matrix],
input_length=args.max_sequence_len,
trainable=embeddings_trainable)
else:
embedding_layer = Embedding(args.nb_words + 1,
args.embedding_dim,
weights=None,
input_length=args.max_sequence_len,
trainable=embeddings_trainable)
print('Defining model.')
input_node = Input(shape=(args.max_sequence_len, args.embedding_dim))
conv_list = []
for index, filtersize in enumerate(filtersize_list):
nb_filter = number_of_filters_per_filtersize[index]
pool_length = pool_length_list[index]
conv = Conv1D(nb_filter=nb_filter, filter_length=filtersize, activation='relu')(input_node)
pool = MaxPooling1D(pool_length=pool_length)(conv)
flatten = Flatten()(pool)
conv_list.append(flatten)
if (len(filtersize_list) > 1):
out = Merge(mode='concat')(conv_list)
else:
out = conv_list[0]
graph = Model(input=input_node, output=out)
model = Sequential()
model.add(embedding_layer)
model.add(Dropout(dropout_list[0], input_shape=(args.max_sequence_len, args.embedding_dim)))
model.add(graph)
model.add(Dense(150))
model.add(Dropout(dropout_list[1]))
model.add(Activation('relu'))
model.add(Dense(args.len_labels_index, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer=optimizer,
metrics=['acc'])
return model
def _param_selector(args):
'''Method to select parameters for models defined in Convolutional Neural Networks for
Sentence Classification paper by Yoon Kim'''
filtersize_list = [3, 4, 5]
number_of_filters_per_filtersize = [100, 100, 100]
pool_length_list = [2, 2, 2]
dropout_list = [0.5, 0.5]
optimizer = Adadelta(clipvalue=3)
use_embeddings = True
embeddings_trainable = False
if (args.model_name.lower() == 'cnn-rand'):
use_embeddings = False
embeddings_trainable = True
elif (args.model_name.lower() == 'cnn-static'):
pass
elif (args.model_name.lower() == 'cnn-non-static'):
embeddings_trainable = True
else:
filtersize_list = [3, 4, 5]
number_of_filters_per_filtersize = [150, 150, 150]
pool_length_list = [2, 2, 2]
dropout_list = [0.25, 0.5]
optimizer = RMSprop(lr=args.learning_rate, decay=args.decay_rate,
clipvalue=args.grad_clip)
use_embeddings = True
embeddings_trainable = True
return (filtersize_list, number_of_filters_per_filtersize, pool_length_list,
dropout_list, optimizer, use_embeddings, embeddings_trainable)