Skip to content

Latest commit

 

History

History
518 lines (404 loc) · 18.4 KB

deepvariant-training-case-study.md

File metadata and controls

518 lines (404 loc) · 18.4 KB

Advanced Case Study: Train a customized SNP and small indel variant caller for BGISEQ-500 data.

DeepVariant is an analysis pipeline that uses a deep neural network to call genetic variants from next-generation DNA sequencing (NGS) data. While DeepVariant is highly accurate for many types of NGS data, some users may be interested in training custom deep learning models that have been optimized for very specific data.

This case study describes one way to train such a custom model using a GPU, in this case for BGISEQ-500 data.

Please note that there is not yet a production-grade training pipeline. This is just one example of how to train a custom model, and is neither the fastest nor the cheapest possible configuration. The resulting model also does not represent the greatest achievable accuracy for BGISEQ-500 data.

High level summary of result

We demonstrated that by training on 1 replicate of BGISEQ-500 whole genome data (everything except for chromosome 20-22), we can significantly improve the accuracy comparing to the WGS model as a baseline: Indel F1 94.5217% --> 98.1381%; SNP F1: 99.8831% --> 99.9064%.

Training for 50,000 steps took about 1.5 hours on 1 GPU. Currently we cannot train on multiple GPUs.

This tutorial is meant as an example for training; all the other processing in this tutorial were done serially with no pipeline optimization.

Request a machine

For this case study, we use a GPU machine with 16 vCPUs.

Set the variables:

YOUR_PROJECT=REPLACE_WITH_YOUR_PROJECT
OUTPUT_GCS_BUCKET=REPLACE_WITH_YOUR_GCS_BUCKET

BUCKET="gs://deepvariant"
BIN_VERSION="1.2.0"

MODEL_BUCKET="${BUCKET}/models/DeepVariant/${BIN_VERSION}/DeepVariant-inception_v3-${BIN_VERSION}+data-wgs_standard"
GCS_PRETRAINED_WGS_MODEL="${MODEL_BUCKET}/model.ckpt"

OUTPUT_BUCKET="${OUTPUT_GCS_BUCKET}/customized_training"
TRAINING_DIR="${OUTPUT_BUCKET}/training_dir"

BASE="${HOME}/training-case-study"
DATA_BUCKET=gs://deepvariant/training-case-study/BGISEQ-HG001

INPUT_DIR="${BASE}/input"
BIN_DIR="${INPUT_DIR}/bin"
DATA_DIR="${INPUT_DIR}/data"
OUTPUT_DIR="${BASE}/output"
LOG_DIR="${OUTPUT_DIR}/logs"
SHUFFLE_SCRIPT_DIR="${HOME}/deepvariant/tools"

REF="${DATA_DIR}/ucsc_hg19.fa"
BAM_CHR1="${DATA_DIR}/BGISEQ_PE100_NA12878.sorted.chr1.bam"
BAM_CHR20="${DATA_DIR}/BGISEQ_PE100_NA12878.sorted.chr20.bam"
BAM_CHR21="${DATA_DIR}/BGISEQ_PE100_NA12878.sorted.chr21.bam"
TRUTH_VCF="${DATA_DIR}/HG001_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_PGandRTGphasetransfer_chrs_FIXED.vcf.gz"
TRUTH_BED="${DATA_DIR}/HG001_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_nosomaticdel_chr.bed"

N_SHARDS=16

Download binaries, models, and data

Create directories:

mkdir -p "${OUTPUT_DIR}"
mkdir -p "${BIN_DIR}"
mkdir -p "${DATA_DIR}"
mkdir -p "${LOG_DIR}"

Copy data

gsutil -m cp ${DATA_BUCKET}/BGISEQ_PE100_NA12878.sorted.chr*.bam* "${DATA_DIR}"
gsutil -m cp -r "${DATA_BUCKET}/ucsc_hg19.fa*" "${DATA_DIR}"
gsutil -m cp -r "${DATA_BUCKET}/HG001_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_*" "${DATA_DIR}"

gunzip "${DATA_DIR}/ucsc_hg19.fa.gz"

Download extra packages

sudo apt -y update
sudo apt -y install parallel
curl -O https://raw.githubusercontent.com/google/deepvariant/r1.2/scripts/install_nvidia_docker.sh
bash -x install_nvidia_docker.sh

Run make_examples in “training” mode for training and validation sets.

Create examples in "training" mode (which means these tensorflow.Examples will contain a label field).

In this tutorial, we create examples on one replicate of HG001 sequenced by BGISEQ-500 provided on the Genome In a Bottle FTP site.

In this tutorial, we show how to create examples in 2 different sets: Training set (chr1), validation set (chr21) - These 2 sets are used in model_train and model_eval, so we create them in "training" mode so they have the real labels. We use chr20 for final evaluation for our trained model at the end.

For the definition of these 3 sets in commonly used machine learning terminology, please refer to Machine Learning Glossary.

Training set

First, to set up,

sudo docker pull google/deepvariant:"${BIN_VERSION}"
sudo docker pull google/deepvariant:"${BIN_VERSION}-gpu"

make_examples step doesn't use GPU:

( time seq 0 $((N_SHARDS-1)) | \
  parallel --halt 2 --line-buffer \
    sudo docker run \
      -v ${HOME}:${HOME} \
      google/deepvariant:"${BIN_VERSION}" \
      /opt/deepvariant/bin/make_examples \
      --mode training \
      --ref "${REF}" \
      --reads "${BAM_CHR1}" \
      --examples "${OUTPUT_DIR}/training_set.with_label.tfrecord@${N_SHARDS}.gz" \
      --truth_variants "${TRUTH_VCF}" \
      --confident_regions "${TRUTH_BED}" \
      --task {} \
      --regions "'chr1'" \
) 2>&1 | tee "${LOG_DIR}/training_set.with_label.make_examples.log"

Output from each individual parallel run can be found in ${LOG_DIR}/*/*/.

This took about 20min. We will want to shuffle this on Dataflow later, so we copy the data to GCS bucket first:

gsutil -m cp ${OUTPUT_DIR}/training_set.with_label.tfrecord-?????-of-00016.gz \
  ${OUTPUT_BUCKET}

Validation set

( time seq 0 $((N_SHARDS-1)) | \
  parallel --halt 2 --line-buffer \
    sudo docker run \
      -v /home/${USER}:/home/${USER} \
      google/deepvariant:"${BIN_VERSION}-gpu" \
      /opt/deepvariant/bin/make_examples \
      --mode training \
      --ref "${REF}" \
      --reads "${BAM_CHR21}" \
      --examples "${OUTPUT_DIR}/validation_set.with_label.tfrecord@${N_SHARDS}.gz" \
      --truth_variants "${TRUTH_VCF}" \
      --confident_regions "${TRUTH_BED}" \
      --task {} \
      --regions "'chr21'" \
) 2>&1 | tee "${LOG_DIR}/validation_set.with_label.make_examples.log"

This took: ~6min.

Copy to GCS bucket:

gsutil -m cp ${OUTPUT_DIR}/validation_set.with_label.tfrecord-?????-of-00016.gz \
  ${OUTPUT_BUCKET}

Shuffle each set of examples and generate a data configuration file for each.

Shuffling the tensorflow.Examples is an important step for training a model. In our training logic, we shuffle examples globally using a preprocessing step.

First, if you have run this step before, and want to rerun it, you might want to consider cleaning up previous data first to avoid confusion:

# (Optional) Clean up existing files.
gsutil -m rm -f "${OUTPUT_BUCKET}/training_set.with_label.shuffled-?????-of-?????.tfrecord.gz"
gsutil rm -f "${OUTPUT_BUCKET}/training_set.dataset_config.pbtxt"
gsutil -m rm -f "${OUTPUT_BUCKET}/validation_set.with_label.shuffled-?????-of-?????.tfrecord.gz"
gsutil rm -f "${OUTPUT_BUCKET}/validation_set.dataset_config.pbtxt"

Here we provide examples for running on Cloud Dataflow Runner and also DirectRunner. Beam can also use other runners, such as Spark Runner.

First, activate a virtual environment to install beam on your machine following the instructions at https://beam.apache.org/get-started/quickstart-py/.

Then, get the code that shuffles:

mkdir -p ${SHUFFLE_SCRIPT_DIR}
wget https://raw.githubusercontent.com/google/deepvariant/r1.2/tools/shuffle_tfrecords_beam.py -O ${SHUFFLE_SCRIPT_DIR}/shuffle_tfrecords_beam.py

Next, we shuffle the data using DataflowRunner. Before that, please make sure you enable Dataflow API for your project: http://console.cloud.google.com/flows/enableapi?apiid=dataflow.

To access gs:// path, make sure you run this in your virtual environment:

sudo apt -y update && sudo apt -y install python3-pip
pip3 install --upgrade pip
pip3 install setuptools --upgrade
pip3 install apache_beam[gcp]
pip3 install tensorflow  # For parsing tf.Example in shuffle_tfrecords_beam.py.

Shuffle using Dataflow.

time python3 ${SHUFFLE_SCRIPT_DIR}/shuffle_tfrecords_beam.py \
  --project="${YOUR_PROJECT}" \
  --input_pattern_list="${OUTPUT_BUCKET}"/training_set.with_label.tfrecord-?????-of-00016.gz \
  --output_pattern_prefix="${OUTPUT_BUCKET}/training_set.with_label.shuffled" \
  --output_dataset_name="HG001" \
  --output_dataset_config_pbtxt="${OUTPUT_BUCKET}/training_set.dataset_config.pbtxt" \
  --job_name=shuffle-tfrecords \
  --runner=DataflowRunner \
  --staging_location="${OUTPUT_BUCKET}/staging" \
  --temp_location="${OUTPUT_BUCKET}/tempdir" \
  --save_main_session \
  --region us-east1

Then, you should be able to see the run on: https://console.cloud.google.com/dataflow?project=YOUR_PROJECT

In order to have the best performance, you might need extra resources such as machines or IPs within a region. That will not be in the scope of this case study here.

The output path can be found in the dataset_config file by:

gsutil cat "${OUTPUT_BUCKET}/training_set.dataset_config.pbtxt"

In the output, the tfrecord_path should be valid paths in gs://.

# Generated by shuffle_tfrecords_beam.py
#
# --input_pattern_list=OUTPUT_BUCKET/training_set.with_label.tfrecord-?????-of-00016.gz
# --output_pattern_prefix=OUTPUT_BUCKET/training_set.with_label.shuffled
#
# class2: 124616
# class1: 173761
# class0: 44707

name: "HG001"
tfrecord_path: "OUTPUT_GCS_BUCKET/training_set.with_label.shuffled-?????-of-?????.tfrecord.gz"
num_examples: 343084

We can shuffle the validation set locally using DirectRunner. Adding --direct_num_workers=0 sets the number of threads/subprocess to the number of cores of the machine where the pipeline is running.

time python3 ${SHUFFLE_SCRIPT_DIR}/shuffle_tfrecords_beam.py \
  --project="${YOUR_PROJECT}" \
  --input_pattern_list="${OUTPUT_DIR}"/validation_set.with_label.tfrecord-?????-of-00016.gz \
  --output_pattern_prefix="${OUTPUT_DIR}/validation_set.with_label.shuffled" \
  --output_dataset_name="HG001" \
  --output_dataset_config_pbtxt="${OUTPUT_DIR}/validation_set.dataset_config.pbtxt" \
  --job_name=shuffle-tfrecords \
  --runner=DirectRunner \
  --direct_num_workers=0

Here is the validation_set:

cat "${OUTPUT_DIR}/validation_set.dataset_config.pbtxt"
# Generated by shuffle_tfrecords_beam.py
#
# --input_pattern_list=OUTPUT_DIR/validation_set.with_label.tfrecord-?????-of-00016.gz
# --output_pattern_prefix=OUTPUT_DIR/validation_set.with_label.shuffled
#
# class1: 31865
# class0: 5612
# class2: 21959

name: "HG001"
tfrecord_path: "OUTPUT_DIR/validation_set.with_label.shuffled-?????-of-?????.tfrecord.gz"
num_examples: 59436

Start model_train and model_eval

NOTE: all parameters below are used as an example. They are not optimized for this dataset, and are not recommended as the best default either.

( time sudo docker run --gpus 1 \
  -v /home/${USER}:/home/${USER} \
  google/deepvariant:"${BIN_VERSION}-gpu" \
  /opt/deepvariant/bin/model_train \
  --dataset_config_pbtxt="${OUTPUT_BUCKET}/training_set.dataset_config.pbtxt" \
  --train_dir="${TRAINING_DIR}" \
  --model_name="inception_v3" \
  --number_of_steps=50000 \
  --save_interval_secs=300 \
  --batch_size=32 \
  --learning_rate=0.0005 \
  --start_from_checkpoint="${GCS_PRETRAINED_WGS_MODEL}" \
) > "${LOG_DIR}/train.log" 2>&1 &

At the same time, we start model_eval on the same machine. Given we only have 1 GPU in this example and is being used in model_train, we run model_eval on CPUs instead (without --gpus 1).

sudo docker run \
  -v /home/${USER}:/home/${USER} \
  google/deepvariant:"${BIN_VERSION}" \
  /opt/deepvariant/bin/model_eval \
  --dataset_config_pbtxt="${OUTPUT_DIR}/validation_set.dataset_config.pbtxt" \
  --checkpoint_dir="${TRAINING_DIR}" \
  --batch_size=512 > "${LOG_DIR}/eval.log" 2>&1 &

model_eval will watch the ${TRAINING_DIR} and start evaluating when there are newly saved checkpoints. It evaluates the checkpoints on the data specified in validation_set.dataset_config.pbtxt, and saves *metrics file to the directory. These files are used later to pick the best model based on how accurate they are on the validation set.

When I ran this case study, running model_eval on CPUs is fast enough because model_train didn't save checkpoints too frequently.

In my run, model_train took about 1.5hr to finish 50k steps (with batch_size 32). Note that model_eval will not stop on its own, so I had to kill the process after training is no longer producing more checkpoints.

(Optional) Use TensorBoard to visualize progress

We can start a TensorBoard to visualize the progress of training better. This step is optional.

You'll want to let model_train and model_eval run for a while before you start a TensorBoard. (You can start a TensorBoard immediately, but you just won't see the metrics summary until later.)

We did this through a Google Cloud Shell from https://console.cloud.google.com, on the top right:

Shell

This opens up a terminal at the bottom of the browser page, then run:

# Change to your OUTPUT_BUCKET from earlier.
OUTPUT_BUCKET="${OUTPUT_GCS_BUCKET}/customized_training"
TRAINING_DIR="${OUTPUT_BUCKET}/training_dir"
tensorboard --logdir ${TRAINING_DIR} --port=8080

After it started, I clicked on the “Web Preview” on the top right of the mini terminal:

WebPreview

And clicked on "Preview on port 8080":

PreviewOnPort

Once it starts, you can see many metrics, including accuracy, speed, etc. You will need to wait for both model_train and model_eval to run for a while before the plots will make more sense.

Pick a model

You can directly look up the best checkpoint by running:

gsutil cat "${TRAINING_DIR}"/best_checkpoint.txt

In my run, this showed that the model checkpoint that performs the best on the validation set was ${TRAINING_DIR}/model.ckpt-36165.

Let's use this model to do the final evaluation on the test set and see how we do. We can use the one-step command to call:

sudo docker run --gpus 1 \
  -v /home/${USER}:/home/${USER} \
  google/deepvariant:"${BIN_VERSION}-gpu" \
  /opt/deepvariant/bin/run_deepvariant \
  --model_type WGS \
  --customized_model "${TRAINING_DIR}/model.ckpt-36165" \
  --ref "${REF}" \
  --reads "${BAM_CHR20}" \
  --regions "chr20" \
  --output_vcf "${OUTPUT_DIR}/test_set.vcf.gz" \
  --num_shards=${N_SHARDS}

Once this is done, we have the final callset in VCF format here: ${OUTPUT_DIR}/test_set.vcf.gz. Next step is to run hap.py to complete the evaluation on chromosome 20:

sudo docker pull jmcdani20/hap.py:v0.3.12

time sudo docker run -it \
-v "${DATA_DIR}:${DATA_DIR}" \
-v "${OUTPUT_DIR}:${OUTPUT_DIR}" \
jmcdani20/hap.py:v0.3.12 /opt/hap.py/bin/hap.py \
  "${TRUTH_VCF}" \
  "${OUTPUT_DIR}/test_set.vcf.gz" \
  -f "${TRUTH_BED}" \
  -r "${REF}" \
  -o "${OUTPUT_DIR}/chr20-calling.happy.output" \
  -l chr20 \
  --engine=vcfeval \
  --pass-only

The output of hap.py is here:

[I] Total VCF records:         3775119
[I] Non-reference VCF records: 3775119
[I] Total VCF records:         132918
[I] Non-reference VCF records: 96453
Benchmarking Summary:
Type Filter  TRUTH.TOTAL  TRUTH.TP  TRUTH.FN  QUERY.TOTAL  QUERY.FP  QUERY.UNK  FP.gt  FP.al  METRIC.Recall  METRIC.Precision  METRIC.Frac_NA  METRIC.F1_Score  TRUTH.TOTAL.TiTv_ratio  QUERY.TOTAL.TiTv_ratio  TRUTH.TOTAL.het_hom_ratio  QUERY.TOTAL.het_hom_ratio
INDEL    ALL        10023      9801       222        19232       156       8876    110     29       0.977851          0.984936        0.461522         0.981381                     NaN                     NaN                   1.547658                   2.065684
INDEL   PASS        10023      9801       222        19232       156       8876    110     29       0.977851          0.984936        0.461522         0.981381                     NaN                     NaN                   1.547658                   2.065684
  SNP    ALL        66237     66167        70        78220        54      11963     13      3       0.998943          0.999185        0.152940         0.999064                2.284397                  2.2033                   1.700387                   1.797389
  SNP   PASS        66237     66167        70        78220        54      11963     13      3       0.998943          0.999185        0.152940         0.999064                2.284397                  2.2033                   1.700387                   1.797389

To summarize, the accuracy is:

Type # FN # FP Recall Precision F1_Score
INDEL 222 156 0.977851 0.984936 0.981381
SNP 70 54 0.998943 0.999185 0.999064

The baseline we're comparing to is to directly use the WGS model to make the calls, using this command:

sudo docker run --gpus 1 \
  -v /home/${USER}:/home/${USER} \
  google/deepvariant:"${BIN_VERSION}-gpu" \
  /opt/deepvariant/bin/run_deepvariant \
  --model_type WGS \
  --ref "${REF}" \
  --reads "${BAM_CHR20}" \
  --regions "chr20" \
  --output_vcf "${OUTPUT_DIR}/baseline.vcf.gz" \
  --num_shards=${N_SHARDS}

Baseline:

Type # FN # FP Recall Precision F1_Score
INDEL 366 785 0.963484 0.927630 0.945217
SNP 67 88 0.998988 0.998673 0.998831

Additional things to try

Parameters to tune

Starting from the default setting of this tutorial is a good starting point, but this training case study is by no means the best setting. Training is both a science and an art. There are many knobs that we could potentially tune. Users might be able to use different parameters to train a more accurate model even with the same data, such as batch_size, learning_rate, learning_rate_decay_factor in modeling.py.

Downsampling the BAM file to generate more training examples

When generating the training set, we can make some adjustment to create more training data. For example, when we train the released WGS model for DeepVariant, for each BAM file, we created an extra set of training examples using --downsample_fraction=0.5, which downsamples the reads and creates training examples with lower coverage. We found that this makes the trained model more robust.