-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_inversion.py
336 lines (275 loc) · 12.6 KB
/
run_inversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
"""Project given image to the latent space of pretrained network pickle."""
import copy
import os
from time import perf_counter
import dill
import click
import imageio
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from tqdm import trange
import dnnlib
import legacy
from metrics import metric_utils
import timm
from training.diffaug import DiffAugment
from pg_modules.blocks import Interpolate
def get_morphed_w_code(new_w_code, fixed_w, regularizer_alpha=30):
interpolation_direction = new_w_code - fixed_w
interpolation_direction_norm = torch.norm(interpolation_direction, p=2)
direction_to_move = regularizer_alpha * interpolation_direction / interpolation_direction_norm
result_w = fixed_w + direction_to_move
return result_w
def space_regularizer_loss(
G_pti,
G_original,
w_batch,
vgg16,
num_of_sampled_latents=1,
lpips_lambda=10,
):
z_samples = np.random.randn(num_of_sampled_latents, G_original.z_dim)
z_samples = torch.from_numpy(z_samples).to(w_batch.device)
if not G_original.c_dim:
c_samples = None
else:
c_samples = F.one_hot(torch.randint(G_original.c_dim, (num_of_sampled_latents,)), G_original.c_dim)
c_samples = c_samples.to(w_batch.device)
w_samples = G_original.mapping(z_samples, c_samples, truncation_psi=0.5)
territory_indicator_ws = [get_morphed_w_code(w_code.unsqueeze(0), w_batch) for w_code in w_samples]
for w_code in territory_indicator_ws:
new_img = G_pti.synthesis(w_code, noise_mode='none', force_fp32=True)
with torch.no_grad():
old_img = G_original.synthesis(w_code, noise_mode='none', force_fp32=True)
# Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
if new_img.shape[-1] > 256:
new_img = F.interpolate(new_img, size=(256, 256), mode='area')
old_img = F.interpolate(old_img, size=(256, 256), mode='area')
new_feat = vgg16(new_img, resize_images=False, return_lpips=True)
old_feat = vgg16(old_img, resize_images=False, return_lpips=True)
lpips_loss = lpips_lambda * (old_feat - new_feat).square().sum()
return lpips_loss / len(territory_indicator_ws)
def pivotal_tuning(
G,
w_pivot,
target,
device: torch.device,
num_steps=350,
learning_rate = 3e-4,
noise_mode="const",
verbose = False,
):
G_original = copy.deepcopy(G).eval().requires_grad_(False).to(device)
G_pti = copy.deepcopy(G).train().requires_grad_(True).to(device)
w_pivot.requires_grad_(False)
# Load VGG16 feature detector.
vgg16_url = 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/metrics/vgg16.pkl'
vgg16 = metric_utils.get_feature_detector(vgg16_url, device=device)
# l2 criterion
l2_criterion = torch.nn.MSELoss(reduction='mean')
# Features for target image.
target_images = target.unsqueeze(0).to(device).to(torch.float32)
if target_images.shape[2] > 256:
target_images = F.interpolate(target_images, size=(256, 256), mode='area')
target_features = vgg16(target_images, resize_images=False, return_lpips=True)
# initalize optimizer
optimizer = torch.optim.Adam(G_pti.parameters(), lr=learning_rate)
# run optimization loop
all_images = []
for step in range(num_steps):
# Synth images from opt_w.
synth_images = G_pti.synthesis(w_pivot[0].repeat(1,G.num_ws,1), noise_mode=noise_mode)
# track images
synth_images = (synth_images + 1) * (255/2)
synth_images_np = synth_images.clone().detach().permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
all_images.append(synth_images_np)
# Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
if synth_images.shape[2] > 256:
synth_images = F.interpolate(synth_images, size=(256, 256), mode='area')
# LPIPS loss
synth_features = vgg16(synth_images, resize_images=False, return_lpips=True)
lpips_loss = (target_features - synth_features).square().sum()
# MSE loss
mse_loss = l2_criterion(target_images, synth_images)
# space regularizer
reg_loss = space_regularizer_loss(G_pti, G_original, w_pivot, vgg16)
# Step
optimizer.zero_grad(set_to_none=True)
loss = mse_loss + lpips_loss + reg_loss
loss.backward()
optimizer.step()
msg = f'[ step {step+1:>4d}/{num_steps}] '
msg += f'[ loss: {float(loss):<5.2f}] '
msg += f'[ lpips: {float(lpips_loss):<5.2f}] '
msg += f'[ mse: {float(mse_loss):<5.2f}]'
msg += f'[ reg: {float(reg_loss):<5.2f}]'
if verbose: print(msg)
return all_images, G_pti
def project(
G,
target: torch.Tensor, # [C,H,W] and dynamic range [0,255], W & H must match G output resolution
*,
num_steps = 1000,
w_avg_samples = 10000,
initial_learning_rate = 0.1,
lr_rampdown_length = 0.25,
lr_rampup_length = 0.05,
verbose = False,
device: torch.device,
noise_mode="const",
):
assert target.shape == (G.img_channels, G.img_resolution, G.img_resolution)
G = copy.deepcopy(G).eval().requires_grad_(False).to(device) # type: ignore
# Compute w stats.
print(f'Computing W midpoint and stddev using {w_avg_samples} samples...')
z_samples = torch.from_numpy(np.random.RandomState(123).randn(w_avg_samples, G.z_dim)).to(device)
# get class probas by classifier
if not G.c_dim:
c_samples = None
else:
classifier = timm.create_model('deit_base_distilled_patch16_224', pretrained=True).eval().to(device)
cls_target = F.interpolate((target.to(device).to(torch.float32) / 127.5 - 1)[None], 224)
logits = classifier(cls_target).softmax(1)
classes = torch.multinomial(logits, w_avg_samples, replacement=True).squeeze()
print(f'Main class: {logits.argmax(1).item()}, confidence: {logits.max().item():.4f}')
c_samples = np.zeros([w_avg_samples, G.c_dim], dtype=np.float32)
for i, c in enumerate(classes):
c_samples[i, c] = 1
c_samples = torch.from_numpy(c_samples).to(device)
w_samples = G.mapping(z_samples, c_samples) # [N, L, C]
# get empirical w_avg
w_samples = w_samples[:, :1, :].cpu().numpy().astype(np.float32) # [N, 1, C]
w_avg = np.mean(w_samples, axis=0, keepdims=True) # [1, 1, C]
# Load VGG16 feature detector.
vgg16_url = 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/metrics/vgg16.pkl'
vgg16 = metric_utils.get_feature_detector(vgg16_url, device=device)
# Features for target image.
target_images = target.unsqueeze(0).to(device).to(torch.float32)
if target_images.shape[2] > 256:
target_images = F.interpolate(target_images, size=(256, 256), mode='area')
target_features = vgg16(target_images, resize_images=False, return_lpips=True)
# initalize optimizer
w_opt = torch.tensor(w_avg, dtype=torch.float32, device=device, requires_grad=True) # pylint: disable=not-callable
optimizer = torch.optim.Adam([w_opt], betas=(0.9, 0.999), lr=initial_learning_rate)
# run optimization loop
all_images = []
for step in range(num_steps):
# Learning rate schedule.
t = step / num_steps
lr_ramp = min(1.0, (1.0 - t) / lr_rampdown_length)
lr_ramp = 0.5 - 0.5 * np.cos(lr_ramp * np.pi)
lr_ramp = lr_ramp * min(1.0, t / lr_rampup_length)
lr = initial_learning_rate * lr_ramp
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# Synth images from opt_w.
synth_images = G.synthesis(w_opt[0].repeat(1,G.num_ws,1), noise_mode=noise_mode)
# track images
synth_images = (synth_images + 1) * (255/2)
synth_images_np = synth_images.clone().detach().permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
all_images.append(synth_images_np)
# Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
if synth_images.shape[2] > 256:
synth_images = F.interpolate(synth_images, size=(256, 256), mode='area')
# Features for synth images.
synth_features = vgg16(synth_images, resize_images=False, return_lpips=True)
lpips_loss = (target_features - synth_features).square().sum()
# Step
optimizer.zero_grad(set_to_none=True)
loss = lpips_loss
loss.backward()
optimizer.step()
msg = f'[ step {step+1:>4d}/{num_steps}] '
msg += f'[ loss: {float(loss):<5.2f}] '
if verbose: print(msg)
return all_images, w_opt.detach()[0]
@click.command()
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--target', 'target_fname', help='Target image file to project to', required=True, metavar='FILE')
@click.option('--seed', help='Random seed', type=int, default=42, show_default=True)
@click.option('--save-video', help='Save an mp4 video of optimization progress', type=bool, default=True, show_default=True)
@click.option('--outdir', help='Where to save the output images', required=True, metavar='DIR')
@click.option('--inv-steps', help='Number of inversion steps', type=int, default=1000, show_default=True)
@click.option('--w-init', help='path to inital latent', type=str, default='', show_default=True)
@click.option('--run-pti', help='run pivotal tuning', is_flag=True)
@click.option('--pti-steps', help='Number of pti steps', type=int, default=350, show_default=True)
def run_projection(
network_pkl: str,
target_fname: str,
outdir: str,
save_video: bool,
seed: int,
inv_steps: int,
w_init: str,
run_pti: bool,
pti_steps: int,
):
np.random.seed(seed)
torch.manual_seed(seed)
# Load networks.
print('Loading networks from "%s"...' % network_pkl)
device = torch.device('cuda')
with dnnlib.util.open_url(network_pkl) as fp:
G = legacy.load_network_pkl(fp)['G_ema'].to(device) # type: ignore
# Load target image.
target_pil = PIL.Image.open(target_fname).convert('RGB')
w, h = target_pil.size
s = min(w, h)
target_pil = target_pil.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2))
target_pil = target_pil.resize((G.img_resolution, G.img_resolution), PIL.Image.LANCZOS)
target_uint8 = np.array(target_pil, dtype=np.uint8)
# Latent optimization
start_time = perf_counter()
all_images = []
if not w_init:
print('Running Latent Optimization...')
all_images, projected_w = project(
G,
target=torch.tensor(target_uint8.transpose([2, 0, 1]), device=device), # pylint: disable=not-callable
num_steps=inv_steps,
device=device,
verbose=True,
noise_mode='const',
)
print(f'Elapsed time: {(perf_counter()-start_time):.1f} s')
else:
projected_w = torch.from_numpy(np.load(w_init)['w'])[0].to(device)
start_time = perf_counter()
# Run PTI
if run_pti:
print('Running Pivotal Tuning Inversion...')
gen_images, G = pivotal_tuning(
G,
projected_w,
target=torch.tensor(target_uint8.transpose([2, 0, 1]), device=device),
device=device,
num_steps=pti_steps,
verbose=True,
)
all_images += gen_images
print(f'Elapsed time: {(perf_counter()-start_time):.1f} s')
# Render debug output: optional video and projected image and W vector.
os.makedirs(outdir, exist_ok=True)
if save_video:
video = imageio.get_writer(f'{outdir}/proj.mp4', mode='I', fps=60, codec='libx264', bitrate='16M')
print (f'Saving optimization progress video "{outdir}/proj.mp4"')
for synth_image in all_images:
video.append_data(np.concatenate([target_uint8, synth_image], axis=1))
video.close()
# Save final projected frame and W vector.
target_pil.save(f'{outdir}/target.png')
synth_image = G.synthesis(projected_w.repeat(1, G.num_ws, 1))
synth_image = (synth_image + 1) * (255/2)
synth_image = synth_image.permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
PIL.Image.fromarray(synth_image, 'RGB').save(f'{outdir}/proj.png')
# save latents
np.savez(f'{outdir}/projected_w.npz', w=projected_w.unsqueeze(0).cpu().numpy())
# Save Generator weights
snapshot_data = {'G': G, 'G_ema': G}
with open(f"{outdir}/G.pkl", 'wb') as f:
dill.dump(snapshot_data, f)
#----------------------------------------------------------------------------
if __name__ == "__main__":
run_projection() # pylint: disable=no-value-for-parameter