-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_entity.py
724 lines (600 loc) · 27.3 KB
/
graph_entity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
from typing import List, Tuple, Dict, Optional, Any
from openai import OpenAI
import networkx as nx
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from graph_storage import GraphStorage
from embedding_model import EmbeddingModel
ENTITY_MERGE_PROMPT = "prompt/entity_merge.txt"
RELATIONSHIP_MERGE_PROMPT = "prompt/relationship_merge.txt"
COMMUNITY_SUMMARY_PROMPT = "prompt/community_summary.txt"
class GraphEntity:
"""实体管理器,处理所有与实体和关系相关的操作"""
def __init__(self, storage: GraphStorage, llm_client: OpenAI):
"""
初始化实体管理器
Args:
storage: 存储管理器实例
llm_client: LLM客户端实例,用于实体合并判断
"""
self.storage = storage
self.llm_client = llm_client
def add_entity(self, entity_id: str, content_units: List[Tuple[str, str]]) -> str:
"""
添加实体到图谱,如果存在相似实体则进行合并判断
Args:
entity_id: 实体ID
content_units: [(title, content),...] 格式的内容单元列表
Returns:
str: 实体的主ID(可能是合并后的ID)
"""
# 检查是否已存在
main_id = self._get_main_id(entity_id)
if main_id:
print(f"发现已存在实体 '{entity_id}',正在与主实体 '{main_id}' 合并...")
self._merge_entity_content(main_id, content_units)
return main_id
# 生成新实体的嵌入
new_embedding = EmbeddingModel.get_instance().embed_query(entity_id)
# 检查相似实体
for existing_id, existing_embedding in self.storage.entity_embeddings.items():
similarity = cosine_similarity([new_embedding], [existing_embedding])[0][0]
if similarity > 0.85:
print(
f"发现高相似度实体:'{entity_id}' 与 '{existing_id}' 的相似度为 {similarity:.3f}"
)
should_merge = self._llm_merge_judgment(entity_id, existing_id)
if should_merge:
print(
f"大模型判定可以合并,正在将 '{entity_id}' 合并到 '{existing_id}'..."
)
self._merge_entity_content(existing_id, content_units)
self._add_alias(existing_id, entity_id)
return existing_id
# 添加为新实体
print(f"添加新实体:'{entity_id}'")
self.storage.graph.add_node(entity_id)
self.storage.entity_embeddings[entity_id] = new_embedding
self.storage.alias_to_main_id[entity_id] = entity_id
self.storage.save_entity(entity_id, content_units)
return entity_id
def add_relationship(
self, entity1_id: str, entity2_id: str, relationship_type: str
) -> None:
"""
添加实体间的关系,与最相似的同向关系合并
当相似度超过0.95时,保留原有关系不做修改
当相似度在0.85-0.95之间时,进行关系合并
当相似度低于0.85时,添加新关系
Args:
entity1_id: 起始实体ID
entity2_id: 目标实体ID
relationship_type: 关系类型
"""
main_id1 = self._get_main_id(entity1_id)
main_id2 = self._get_main_id(entity2_id)
if not (main_id1 and main_id2):
if not main_id1:
print(f"实体 '{entity1_id}' 不存在")
if not main_id2:
print(f"实体 '{entity2_id}' 不存在")
return
# 获取这对实体间的现有同向关系
existing_relationships = [
(d["type"], k)
for u, v, k, d in self.storage.graph.edges(data=True, keys=True)
if u == main_id1 and v == main_id2 # 只获取同向的关系
]
# 如果没有现有关系,直接添加
if not existing_relationships:
self.storage.graph.add_edge(main_id1, main_id2, type=relationship_type)
print(f"添加新关系: {main_id1} -{relationship_type}-> {main_id2}")
return
# 获取所有关系的嵌入向量(包括新关系)
new_embedding = EmbeddingModel.get_instance().embed_query(relationship_type)
rel_embeddings = [
(rel, key, EmbeddingModel.get_instance().embed_query(rel))
for rel, key in existing_relationships
]
# 计算与所有现有关系的相似度
similarities = []
for rel, key, embedding in rel_embeddings:
similarity = cosine_similarity([new_embedding], [embedding])[0][0]
similarities.append((similarity, rel, key))
# 找出最相似的关系
if similarities:
max_similarity, most_similar_rel, edge_key = max(
similarities, key=lambda x: x[0]
)
print(f"发现最相似关系:'{relationship_type}' 与 '{most_similar_rel}'")
print(f"相似度为:{max_similarity:.3f}")
# 如果相似度超过0.95,保留原有关系
if max_similarity > 0.95:
print(f"相似度超过0.95,保留原有关系:'{most_similar_rel}'")
return
# 如果相似度在0.85-0.95之间,进行合并
elif max_similarity > 0.85:
merged_relation = self._llm_merge_relationships(
main_id1, main_id2, relationship_type, most_similar_rel
)
print(f"合并关系为:'{merged_relation}'")
# 更新关系
self.storage.graph.remove_edge(main_id1, main_id2, edge_key)
self.storage.graph.add_edge(main_id1, main_id2, type=merged_relation)
return
# 如果没有相似关系或相似度较低,添加新关系
self.storage.graph.add_edge(main_id1, main_id2, type=relationship_type)
print(f"添加新关系: {main_id1} -{relationship_type}-> {main_id2}")
def get_entity_info(self, entity_id: str) -> Optional[Dict[str, Any]]:
"""
获取实体的详细信息
Args:
entity_id: 实体ID
Returns:
Optional[Dict[str, Any]]: 实体信息字典,包含主ID、内容和别名
"""
main_id = self._get_main_id(entity_id)
if not main_id:
return None
content = self.storage.load_entity(main_id)
aliases = list(self.storage.entity_aliases.get(main_id, []))
return {"main_id": main_id, "content": content, "aliases": aliases}
def get_relationships(self, entity1_id: str, entity2_id: str) -> List[str]:
"""
获取两个实体间的所有关系
Args:
entity1_id: 第一个实体ID
entity2_id: 第二个实体ID
Returns:
List[str]: 关系类型列表
"""
main_id1 = self._get_main_id(entity1_id)
main_id2 = self._get_main_id(entity2_id)
if main_id1 and main_id2:
return [
d["type"]
for u, v, d in self.storage.graph.edges(data=True)
if u == main_id1 and v == main_id2
]
return []
def get_related_entities(self, entity_id: str) -> List[str]:
"""
获取与指定实体相关的所有实体
Args:
entity_id: 实体ID
Returns:
List[str]: 相关实体ID列表
"""
main_id = self._get_main_id(entity_id)
if main_id:
successors = list(self.storage.graph.successors(main_id))
predecessors = list(self.storage.graph.predecessors(main_id))
return list(set(successors + predecessors))
return []
def merge_entities(self, entity_id1: str, entity_id2: str) -> str:
"""
手动合并两个实体
Args:
entity_id1: 第一个实体ID
entity_id2: 第二个实体ID
Returns:
str: 合并后的主实体ID
"""
main_id1 = self._get_main_id(entity_id1)
main_id2 = self._get_main_id(entity_id2)
if not (main_id1 and main_id2):
if not main_id1:
print(f"实体 '{entity_id1}' 不存在")
if not main_id2:
print(f"实体 '{entity_id2}' 不存在")
return ""
# 选择保留ID较短的实体作为主实体
main_entity = main_id1 if len(main_id1) <= len(main_id2) else main_id2
merged_entity = main_id2 if main_entity == main_id1 else main_id1
# 合并内容
merged_content = self.storage.load_entity(merged_entity)
self._merge_entity_content(main_entity, merged_content)
# 合并关系
self._merge_entity_relationships(main_entity, merged_entity)
# 合并别名
self._merge_entity_aliases(main_entity, merged_entity)
# 删除被合并的实体
self._remove_entity(merged_entity)
return main_entity
def merge_similar_entities(self) -> None:
"""自动检查并合并相似实体"""
print("\n开始检查和合并相似实体...")
# 获取所有实体对的相似度
entity_pairs = []
entities = list(self.storage.graph.nodes())
for i, entity1 in enumerate(entities):
embedding1 = self.storage.entity_embeddings[entity1]
for entity2 in entities[i + 1 :]:
embedding2 = self.storage.entity_embeddings[entity2]
similarity = cosine_similarity([embedding1], [embedding2])[0][0]
if similarity > 0.85:
if self._llm_merge_judgment(entity1, entity2):
entity_pairs.append((entity1, entity2, similarity))
# 按相似度排序
entity_pairs.sort(key=lambda x: x[2], reverse=True)
# 执行合并
merged_entities = set()
for entity1, entity2, similarity in entity_pairs:
if entity1 not in merged_entities and entity2 not in merged_entities:
print(f"\n合并实体:{entity1} 和 {entity2}(相似度:{similarity:.3f})")
merged_id = self.merge_entities(entity1, entity2)
merged_entities.add(entity2 if merged_id == entity1 else entity1)
def _get_main_id(self, entity_id: str) -> Optional[str]:
"""获取实体的主ID"""
if entity_id in self.storage.alias_to_main_id:
return self.storage.alias_to_main_id[entity_id]
if entity_id in self.storage.graph.nodes():
return entity_id
return None
def _merge_entity_content(
self, main_id: str, content_units: List[Tuple[str, str]]
) -> None:
"""合并实体内容"""
existing_content = self.storage.load_entity(main_id)
# 使用集合去重
existing_set = {
(title.strip(), content.strip()) for title, content in existing_content
}
new_set = {(title.strip(), content.strip()) for title, content in content_units}
merged_set = existing_set.union(new_set)
# 保存合并后的内容
self.storage.save_entity(main_id, list(merged_set))
def _merge_entity_relationships(self, main_id: str, merged_id: str) -> None:
"""合并实体的关系"""
# 处理入边
for predecessor in self.storage.graph.predecessors(merged_id):
if predecessor != main_id: # 避免自环
edges_data = self.storage.graph.get_edge_data(predecessor, merged_id)
for edge_data in edges_data.values():
# 避免添加自环
if predecessor != main_id:
self.add_relationship(predecessor, main_id, edge_data["type"])
# 处理出边
for successor in self.storage.graph.successors(merged_id):
if successor != main_id: # 避免自环
edges_data = self.storage.graph.get_edge_data(merged_id, successor)
for edge_data in edges_data.values():
# 避免添加自环
if successor != main_id:
self.add_relationship(main_id, successor, edge_data["type"])
def _merge_entity_aliases(self, main_id: str, merged_id: str) -> None:
"""合并实体的别名"""
if merged_id in self.storage.entity_aliases:
for alias in self.storage.entity_aliases[merged_id]:
self._add_alias(main_id, alias)
del self.storage.entity_aliases[merged_id]
self._add_alias(main_id, merged_id)
def _add_alias(self, main_id: str, alias: str) -> None:
"""添加别名"""
if main_id not in self.storage.entity_aliases:
self.storage.entity_aliases[main_id] = set()
self.storage.entity_aliases[main_id].add(alias)
self.storage.alias_to_main_id[alias] = main_id
def _remove_entity(self, entity_id: str) -> None:
"""删除实体"""
self.storage.graph.remove_node(entity_id)
if entity_id in self.storage.entity_embeddings:
del self.storage.entity_embeddings[entity_id]
def _llm_merge_relationships(
self, entity1: str, entity2: str, rel1: str, rel2: str
) -> str:
"""
使用LLM合并两个关系描述,考虑实体上下文
Args:
entity1: 起始实体
entity2: 目标实体
rel1: 第一个关系类型
rel2: 第二个关系类型
Returns:
str: 合并后的关系描述
"""
try:
with open(RELATIONSHIP_MERGE_PROMPT, "r", encoding="utf-8") as file:
template = file.read()
prompt = template.format(
entity1=entity1, entity2=entity2, rel1=rel1, rel2=rel2
)
messages = [{"role": "user", "content": prompt}]
response = self.llm_client.chat.completions.create(
model="moonshot-v1-8k", messages=messages, temperature=0.5
)
return response.choices[0].message.content.strip()
except Exception as e:
print(f"LLM合并关系时发生错误: {str(e)}")
return rel1 # 出错时保留第一个关系
def _llm_merge_judgment(self, entity1: str, entity2: str) -> bool:
"""使用LLM判断两个实体是否应该合并"""
try:
with open(ENTITY_MERGE_PROMPT, "r", encoding="utf-8") as file:
template = file.read()
prompt = template.format(entity1=entity1, entity2=entity2)
messages = [{"role": "user", "content": prompt}]
response = self.llm_client.chat.completions.create(
model="moonshot-v1-8k", messages=messages, temperature=0.5
)
result = response.choices[0].message.content.strip().lower()
return result == "yes"
except Exception as e:
print(f"LLM判断发生错误: {str(e)}")
return False
def remove_duplicates_and_self_loops(self) -> None:
"""移除重复边和自循环(包括别名)"""
changes_made = False # 追踪是否有任何改动
# 移除直接自循环
for u, v, data in list(nx.selfloop_edges(self.storage.graph, data=True)):
print(f"移除自循环边: {u} -> {v}, 关系类型: {data.get('type')}")
self.storage.graph.remove_edge(u, v)
changes_made = True
# 移除别名导致的自循环
for source, target, data in list(self.storage.graph.edges(data=True)):
source_main = self.storage.alias_to_main_id.get(source, source)
target_main = self.storage.alias_to_main_id.get(target, target)
if source_main == target_main:
print(
f"移除别名自循环边: {source} -> {target}, 关系类型: {data.get('type')}, 主实体: {source_main}"
)
self.storage.graph.remove_edge(source, target)
changes_made = True
# 移除重复边
edges_to_remove = []
for u, v, keys, data in self.storage.graph.edges(keys=True, data=True):
edge_type = data.get("type")
edge_data = self.storage.graph.get_edge_data(u, v)
if edge_data:
existing_edges = [
(k, d)
for k, d in edge_data.items()
if k != keys and d.get("type") == edge_type
]
for k, _ in existing_edges:
edges_to_remove.append((u, v, k))
print(f"移除重复边: {u} -> {v}, 关系类型: {edge_type}")
for edge in edges_to_remove:
self.storage.graph.remove_edge(*edge)
changes_made = True
# 如果有任何改动,保存更新后的图谱
if changes_made:
print("检测到图谱改动,正在保存更新...")
self.storage.save()
print("图谱已更新并保存")
else:
print("未发现重复边或自循环,无需更新")
def merge_graphs(self, other_entity: "GraphEntity") -> None:
"""
将另一个图谱的实体和关系合并到当前图谱
Args:
other_entity: 要合并的图谱的实体管理器实例
"""
print("开始合并图谱...")
# 1. 合并节点和内容
for node in other_entity.storage.graph.nodes():
print(f"\n处理节点: {node}")
node_info = other_entity.get_entity_info(node)
if node_info:
# 检查节点是否已存在
main_id = self._get_main_id(node)
if main_id:
print(f"节点 '{node}' 已存在,主实体ID为 '{main_id}'")
# 合并内容
self._merge_entity_content(main_id, node_info["content"])
# 合并别名
for alias in node_info["aliases"]:
if alias not in self.storage.alias_to_main_id:
self._add_alias(main_id, alias)
print(f"添加别名: {alias} -> {main_id}")
else:
# 添加新节点
print(f"添加新节点: {node}")
new_id = self.add_entity(node, node_info["content"])
# 添加别名
for alias in node_info["aliases"]:
self._add_alias(new_id, alias)
# 2. 合并关系
for edge in other_entity.storage.graph.edges(data=True):
source, target, data = edge
source_main = self._get_main_id(source)
target_main = self._get_main_id(target)
if source_main and target_main:
# 检查关系是否已存在
existing_relationships = self.get_relationships(
source_main, target_main
)
if data["type"] not in existing_relationships:
self.add_relationship(source_main, target_main, data["type"])
print(f"添加关系: {source_main} -{data['type']}-> {target_main}")
else:
print(f"关系已存在: {source_main} -{data['type']}-> {target_main}")
# 3. 重建向量库
print("\n更新向量库...")
# 更新实体向量库
for node in self.storage.graph.nodes():
content = self.storage.load_entity(node)
if content:
self.storage._create_entity_vector_store(node, content)
print(f"已更新实体 '{node}' 的向量库")
# 4. 保存更新后的图谱
self.storage.save()
print("\n图谱合并完成!")
# 5. 打印合并统计信息
print("\n合并统计:")
print(f"- 总节点数: {len(self.storage.graph.nodes())}")
print(f"- 总关系数: {len(self.storage.graph.edges())}")
print(
f"- 总别名数: {sum(len(aliases) for aliases in self.storage.entity_aliases.values())}"
)
print(f"- 向量库数量: {len(self.storage.vector_stores)}")
def detect_communities(
self, resolution: float = 1.2, min_community_size: int = 4
) -> Dict[int, Dict]:
"""
检测和分析社区
Args:
resolution: 社区划分的分辨率参数
min_community_size: 最小社区大小
Returns:
Dict[int, Dict]: 社区信息字典
"""
# 获取图的副本并移除自环
G = self.storage.graph.copy()
G.remove_edges_from(nx.selfloop_edges(G))
print("开始社区检测:图的节点数:", len(G.nodes), "图的边数:", len(G.edges))
# 使用Louvain方法检测社区
raw_communities = nx.community.louvain_communities(
G, resolution=resolution, seed=42
)
print("检测到的社区数:", len(raw_communities))
# 分析每个社区
communities_data = {}
for idx, members in enumerate(raw_communities):
if len(members) < min_community_size:
print(
f"社区 {idx} 被跳过,因为成员数 {len(members)} 小于阈值 {min_community_size}"
)
continue
print(f"\n正在处理社区 {idx},成员数: {len(members)}")
members_list = list(members)
# 获取核心成员
central_members = self._identify_central_members(members_list)
print(f"社区 {idx} 的核心成员: {central_members}")
# 获取社区内所有关系
community_relations = self._get_community_relations(members_list)
print(f"社区 {idx} 的关系数: {len(community_relations)}")
# 生成社区摘要
summary = self._generate_community_summary(
members_list, central_members, community_relations
)
print(f"社区 {idx} 的摘要: {summary[:200]}...") # 只打印前200字符
# 创建社区信息字典
communities_data[idx] = {
"members": members_list,
"central_members": central_members,
"relations": community_relations,
"summary": summary,
}
# 保存社区数据和摘要
self.storage.save_communities(communities_data)
self.storage.save_community_summaries(communities_data)
print("\n社区检测完成,结果已保存。")
return communities_data
def _identify_central_members(self, members: List[str]) -> List[str]:
"""
识别社区的核心成员
Args:
members: 社区成员列表
Returns:
List[str]: 核心成员列表
"""
# 计算每个成员的连接度
member_degrees = {}
for member in members:
successors = set(self.storage.graph.successors(member))
predecessors = set(self.storage.graph.predecessors(member))
# 只考虑社区内的连接
community_connections = len(
[n for n in successors.union(predecessors) if n in members]
)
member_degrees[member] = community_connections
# 选择连接度最高的前4个成员
central_members = sorted(
member_degrees.items(), key=lambda x: x[1], reverse=True
)[:4]
return [member for member, _ in central_members]
def _get_community_relations(self, members: List[str]) -> List[Dict]:
"""
获取社区内的所有关系
Args:
members: 社区成员列表
Returns:
List[Dict]: 关系列表,每个关系包含 source, target, type
"""
relations = []
for source in members:
for target in self.storage.graph.successors(source):
if target in members:
edges = self.storage.graph.get_edge_data(source, target)
for edge_data in edges.values():
relations.append(
{
"source": source,
"target": target,
"type": edge_data["type"],
}
)
return relations
def _generate_community_summary(
self, members: List[str], central_members: List[str], relations: List[Dict]
) -> str:
"""
生成社区摘要
Args:
members: 所有社区成员列表
central_members: 核心成员列表
relations: 社区内的关系列表
Returns:
str: 社区摘要
"""
try:
# 1. 格式化核心成员信息
core_entities_info = [f"- {entity}" for entity in central_members]
# 2. 处理关系信息
# 2.1 计算实体的连接度
entity_connections = {member: 0 for member in members}
for rel in relations:
entity_connections[rel["source"]] = (
entity_connections.get(rel["source"], 0) + 1
)
entity_connections[rel["target"]] = (
entity_connections.get(rel["target"], 0) + 1
)
# 2.2 按关系类型分组并计算权重
relation_groups = {}
for rel in relations:
rel_type = rel["type"]
if rel_type not in relation_groups:
relation_groups[rel_type] = []
# 计算该关系的权重(两个实体的总连接度)
weight = (
entity_connections[rel["source"]]
+ entity_connections[rel["target"]]
)
relation_groups[rel_type].append(
{
"source": rel["source"],
"target": rel["target"],
"weight": weight,
"type": rel_type,
}
)
# 2.3 对每种关系类型内的实体对按权重排序
relation_info = []
for rel_type, rel_list in relation_groups.items():
# 按权重排序实体对
sorted_rels = sorted(rel_list, key=lambda x: x["weight"], reverse=True)
# 格式化关系信息
examples = [
f"{rel['source']}-{rel['type']}-{rel['target']}"
for rel in sorted_rels[:3]
] # 只取权重最高的前3个
relation_info.append(f"- {'; '.join(examples)}")
# 3. 读取并填充提示模板
with open(COMMUNITY_SUMMARY_PROMPT, "r", encoding="utf-8") as f:
prompt_template = f.read()
# 4. 填充模板
prompt = prompt_template.format(
core_entities="\n".join(core_entities_info),
relationships="\n".join(relation_info),
)
# 5. 生成摘要
response = self.llm_client.chat.completions.create(
model="moonshot-v1-auto",
messages=[{"role": "user", "content": prompt}],
temperature=0.5,
)
return response.choices[0].message.content.strip().replace("\n", " ")
except Exception as e:
print(f"生成社区摘要时发生错误: {str(e)}")