-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathSimplConv.thy
63 lines (53 loc) · 1.73 KB
/
SimplConv.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
(*
* Convert a SIMPL fragment into a monadic fragment.
*)
theory SimplConv
imports L1Defs L1Peephole
begin
(*
* Lemmas to unfold prior to L1 conversion.
*)
named_theorems L1unfold
declare creturn_def [L1unfold]
declare creturn_void_def [L1unfold]
declare cbreak_def [L1unfold]
declare whileAnno_def [L1unfold]
declare ccatchbrk_def [L1unfold]
(* Alternative definitions of "Language.switch" *)
lemma switch_alt_defs [L1unfold]:
"switch x [] \<equiv> SKIP"
"switch v ((a, b) # vs) \<equiv> Cond {s. v s \<in> a} b (switch v vs)"
by auto
lemma sless_positive [simp]:
"\<lbrakk> a < n; n \<le> (2 ^ (len_of TYPE('a) - 1)) - 1 \<rbrakk> \<Longrightarrow> (a :: ('a::{len}) word) <s n"
apply (subst signed.less_le)
apply safe
apply (subst word_sle_msb_le)
apply safe
apply (force simp: not_msb_from_less)
apply simp
apply simp
done
lemma sle_positive [simp]:
"\<lbrakk> a \<le> n; n \<le> (2 ^ (len_of TYPE('a) - 1)) - 1 \<rbrakk> \<Longrightarrow> (a :: ('a::{len}) word) <=s n"
apply (clarsimp simp: signed.le_less)
done
(* An induction rule that matches our recursive definitions. *)
lemma recguard_induct: "\<lbrakk> P 0; \<And>n. P (recguard_dec n) \<Longrightarrow> P n \<rbrakk> \<Longrightarrow> P n"
apply (unfold recguard_dec_def)
apply (erule nat_induct)
apply (metis diff_Suc_1)
done
(*
* These "optimisation" rules are actually assumed by LocalVarExtract,
* so better apply them even if L1opt rules are disabled by no_opt.
*)
lemmas [L1except] =
L1_set_to_pred_def in_set_to_pred in_set_if_then (* rewrite SIMPL set notation *)
L1_seq_assoc (* Normalise seqs. Not strictly required, but useful *)
end