-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathL2Peephole.thy
249 lines (212 loc) · 8.83 KB
/
L2Peephole.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
(*
* Peep-hole optimisations for applied to L2.
*)
theory L2Peephole
imports L2Defs
begin
lemma L2_seq_skip [L2opt]:
"L2_seq (L2_gets (\<lambda>_. ()) n) X = (X ())"
"L2_seq Y (\<lambda>_. (L2_gets (\<lambda>_. ()) n)) = Y"
apply (clarsimp simp: L2_seq_def L2_gets_def returnOk_liftE[symmetric])+
done
lemma L2_seq_L2_gets [L2opt]: "L2_seq X (\<lambda>x. L2_gets (\<lambda>_. x) n) = X"
apply (clarsimp simp: L2_defs cong: bindE_cong)
apply (fold returnOk_liftE)
apply simp
done
lemma L2_seq_assoc [L2opt]:
"L2_seq (L2_seq A (\<lambda>x. B x)) C = L2_seq A (\<lambda>x. L2_seq (B x) C)"
apply (clarsimp simp: L2_seq_def bindE_assoc)
done
lemma L2_trim_after_throw [L2opt]:
"L2_seq (L2_throw x n) Z = (L2_throw x n)"
apply (clarsimp simp: L2_seq_def L2_throw_def)
done
lemma L2_guard_true [L2opt]: "\<lbrakk> \<And>s. P s \<rbrakk> \<Longrightarrow> L2_guard P = L2_gets (\<lambda>_. ()) [''ret'']"
apply (monad_eq simp: L2_defs)
done
lemma L2_guard_false [L2opt]: "\<lbrakk> \<And>s. \<not> P s \<rbrakk> \<Longrightarrow> L2_guard P = L2_fail"
apply (monad_eq simp: L2_defs)
done
lemma L2_spec_empty [L2opt]:
(* FIXME: do we need both? *)
"L2_spec {} = L2_fail"
"\<lbrakk> \<And>s t. \<not> C s t \<rbrakk> \<Longrightarrow> L2_spec {(s, t). C s t} = L2_fail"
by (monad_eq simp: L2_defs)+
lemma L2_unknown_bind [L2opt]:
"(\<And>a b. f a = f b) \<Longrightarrow> (L2_seq (L2_unknown name) f) = f undefined"
apply (atomize)
apply (subst (asm) all_comm)
apply (erule allE [where x=undefined])
apply (rule ext)
apply (clarsimp simp: L2_seq_def L2_unknown_def)
apply (clarsimp simp: liftE_def select_def bindE_def)
apply (clarsimp simp: Nondet_Monad.lift_def bind_def)
apply (clarsimp simp: Nondet_Monad.bind_def split_def)
apply (rule prod_eqI)
apply (rule set_eqI)
apply (clarsimp)
apply (rule iffI)
apply clarsimp
apply metis
apply force
apply (clarsimp simp: image_def)
apply (rule iffI)
apply (clarsimp simp: prod_eq_iff)
apply metis
apply force
done
lemma L2_guard_cong:
"\<lbrakk> P = P'; \<And>s. P s \<Longrightarrow> X s = X' s \<rbrakk> \<Longrightarrow> L2_seq (L2_guard P) (\<lambda>_. X) = L2_seq (L2_guard P') (\<lambda>_. X')"
apply (rule ext)
apply (atomize)
apply (erule_tac x=x in allE)
apply (monad_eq simp: L2_defs Bex_def)
done
lemma L2_condition_true [L2opt]: "\<lbrakk> \<And>s. C s \<rbrakk> \<Longrightarrow> L2_condition C A B = A"
apply (clarsimp simp: L2_condition_def condition_def)
done
lemma L2_condition_false [L2opt]: "\<lbrakk> \<And>s. \<not> C s \<rbrakk> \<Longrightarrow> L2_condition C A B = B"
apply (clarsimp simp: L2_condition_def condition_def)
done
lemma L2_condition_same [L2opt]: "L2_condition C A A = A"
apply (clarsimp simp: L2_defs condition_def)
done
lemma L2_fail_seq [L2opt]: "L2_seq L2_fail X = L2_fail"
apply (clarsimp simp: L2_seq_def L2_fail_def)
done
lemma L2_fail_propagates [L2opt]:
"L2_seq (L2_gets V n) (\<lambda>_. L2_fail) = L2_fail"
"L2_seq (L2_modify M) (\<lambda>_. L2_fail) = L2_fail"
"L2_seq (L2_spec S) (\<lambda>_. L2_fail) = L2_fail"
"L2_seq (L2_guard G) (\<lambda>_. L2_fail) = L2_fail"
"L2_seq (L2_unknown name) (\<lambda>_. L2_fail) = L2_fail"
"L2_seq L2_fail (\<lambda>_. L2_fail) = L2_fail"
apply (unfold L2_defs)
apply (auto intro!: bindE_fail_propagates empty_fail_bindE
no_throw_bindE [where B="\<top>"] hoare_TrueI simp: empty_fail_error_bits)
done
lemma L2_condition_distrib:
"L2_seq (L2_condition C L R) X = L2_condition C (L2_seq L X) (L2_seq R X)"
apply (unfold L2_defs)
apply (rule ext)
apply (clarsimp split: condition_splits)
apply (rule conjI)
apply (clarsimp simp: condition_def cong: bindE_apply_cong)
apply (clarsimp simp: condition_def cong: bindE_apply_cong)
done
lemmas L2_fail_propagate_condition [L2opt] = L2_condition_distrib [where X="\<lambda>_. L2_fail"]
lemma L2_fail_propagate_catch [L2opt]:
"(L2_seq (L2_catch L R) (\<lambda>_. L2_fail)) = (L2_catch (L2_seq L (\<lambda>_. L2_fail)) (\<lambda>e. L2_seq (R e) (\<lambda>_. L2_fail)))"
apply (unfold L2_defs)
apply (clarsimp simp: bindE_def)
apply (clarsimp simp: handleE'_def handleE_def)
apply (clarsimp simp: bind_assoc)
apply (rule arg_cong [where f="Nondet_Monad.bind L"])
apply (rule ext)+
apply (clarsimp split: sum.splits)
apply (clarsimp simp: throwError_def)
done
lemma L2_condition_fail_lhs [L2opt]:
"L2_condition C L2_fail A = L2_seq (L2_guard (\<lambda>s. \<not> C s)) (\<lambda>_. A)"
apply (rule ext)
apply (clarsimp simp: L2_guard_def L2_fail_def guard_def get_def
L2_seq_def bindE_def bind_def fail_def liftE_def2 L2_condition_def
split: condition_splits)
done
lemma L2_condition_fail_rhs [L2opt]:
"L2_condition C A L2_fail = L2_seq (L2_guard (\<lambda>s. C s)) (\<lambda>_. A)"
apply (rule ext)
apply (clarsimp simp: L2_guard_def L2_fail_def guard_def get_def
L2_seq_def bindE_def bind_def fail_def liftE_def2 L2_condition_def
split: condition_splits)
done
lemma L2_catch_fail [L2opt]: "L2_catch L2_fail A = L2_fail"
apply (clarsimp simp: L2_catch_def L2_fail_def handleE'_def)
done
lemma L2_while_fail [L2opt]: "L2_while C (\<lambda>_. L2_fail) i n = (L2_seq (L2_guard (\<lambda>s. \<not> C i s)) (\<lambda>_. L2_gets (\<lambda>s. i) n))"
apply (rule ext)+
apply (clarsimp simp: L2_defs)
apply (subst whileLoopE_unroll)
apply (clarsimp split: condition_splits)
apply (monad_eq)
done
lemma L2_returncall_trivial [L2opt]:
"\<lbrakk> \<And>s v. f v s = v \<rbrakk> \<Longrightarrow> L2_returncall x f = L2_call x"
apply (rule ext)+
apply (monad_eq simp: L2_defs L2_call_def)
done
(*
* Trim "L2_gets" commands where the value is never actually used.
*
* This would be nice to apply automatically, but in practice causes
* everything to slow down significantly.
*)
lemma L2_gets_unused:
"\<lbrakk> \<And>x y s. B x s = B y s \<rbrakk> \<Longrightarrow> L2_seq (L2_gets A n) B = (B undefined)"
by (fastforce simp: L2_defs bindE_def simpler_gets_def bind_def lift_def split_def liftE_def2)
lemma L2_gets_bind:
"L2_seq (L2_gets (\<lambda>_. x :: 'var_type) n) f = f x"
by (monad_eq simp: L2corres_def corresXF_def L2_defs Bex_def)
lemma split_seq_assoc [L2opt]:
"(\<lambda>x. L2_seq (case x of (a, b) \<Rightarrow> B a b) (G x)) = (\<lambda>x. case x of (a, b) \<Rightarrow> (L2_seq (B a b) (G x)))"
by (rule ext) clarsimp
lemma L2_while_infinite [L2opt]:
"L2_while (\<lambda>i s. C s) (\<lambda>x. L2_gets (\<lambda>s. B s x) n') i n
= (L2_seq (L2_guard (\<lambda>s. \<not> C s)) (\<lambda>_. L2_gets (\<lambda>_. i) n))"
apply (clarsimp simp: L2_defs whileLoopE_def)
apply (rule ext)
apply (case_tac "C x")
apply (rule whileLoop_rule_strong)
apply (rule valid_whileLoop [where I="\<lambda>r s. C s \<and> (\<exists>x. r = Inr x)"])
apply simp
apply (monad_eq simp: valid_def)
apply monad_eq
apply monad_eq
apply (rule snd_whileLoop [where I="\<lambda>r s. True"])
apply monad_eq
apply monad_eq
apply (monad_eq simp: exs_valid_def split: sum.splits)
apply monad_eq
apply (subst whileLoop_unroll)
apply monad_eq
done
(*
* We are happy to collapse away automatically generated constructs.
*
* In particular, anything of type "c_exntype" (which is used to track
* what the current exception represents at the C level) is
* autogenerated, and hence can be collapsed.
*)
lemmas L2_gets_bind_c_exntype [L2opt] = L2_gets_bind [where 'var_type=c_exntype]
lemmas L2_gets_bind_unit [L2opt] = L2_gets_bind [where 'var_type=unit]
declare L2_voidcall_def [L2opt]
declare L2_modifycall_def [L2opt]
declare ucast_id [L2opt]
declare scast_id [L2opt]
(* Other misc lemmas. *)
declare singleton_iff [L2opt]
(* Optimising "if" structres. *)
lemma L2_gets_L2_seq_if_P_1_0 [L2opt]:
"L2_seq (L2_gets (\<lambda>s. if P s then 1 else 0) n) (\<lambda>x. Q x)
= (L2_seq (L2_gets P n) (\<lambda>x. Q (if x then 1 else 0)))"
apply (clarsimp simp: L2_defs)
apply (rule monad_eqI)
apply (clarsimp simp: L2_defs in_liftE in_gets in_bindE)
apply (clarsimp simp: L2_defs in_liftE in_gets in_bindE)
apply (clarsimp simp: L2_defs in_liftE snd_liftE snd_gets snd_bindE Bex_def in_gets)
done
(* Join up guards, so that we can potentially solve some just by using
* HOL.conj_cong. We will split them out again during the polish phase. *)
lemma L2_guard_join_simple [L2opt]: "L2_seq (L2_guard A) (\<lambda>_. L2_guard B) = L2_guard (\<lambda>s. A s \<and> B s)"
by (monad_eq simp: L2_defs')
lemma L2_guard_join_nested [L2opt]:
"L2_seq (L2_guard A) (\<lambda>_. L2_seq (L2_guard B) (\<lambda>_. C))
= L2_seq (L2_guard (\<lambda>s. A s \<and> B s)) (\<lambda>_. C)"
by (monad_eq simp: L2_defs')
end