-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathGlobalsSwap.thy
921 lines (817 loc) · 40 KB
/
GlobalsSwap.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
theory GlobalsSwap
imports
"Lib.Lib"
"CParser.CTranslation"
"CParser.PackedTypes"
begin
datatype 'g global_data =
GlobalData "string" "nat" "addr \<Rightarrow> bool" "'g \<Rightarrow> word8 list"
"word8 list \<Rightarrow> 'g \<Rightarrow> 'g"
| ConstGlobalData "string" "nat" "addr \<Rightarrow> bool"
"word8 list" "word8 list \<Rightarrow> bool"
| AddressedGlobalData "string" "nat" "addr \<Rightarrow> bool"
(* in each case the symbol name, length in bytes, tag and constraint on
address. for active globals a getter/setter, for const globals
a sample value and a way to check a value *)
definition
is_const_global_data :: "'g global_data \<Rightarrow> bool"
where
"is_const_global_data gd =
(case gd of ConstGlobalData nm m ok v chk \<Rightarrow> True | _ \<Rightarrow> False)"
definition
is_addressed_global_data :: "'g global_data \<Rightarrow> bool"
where
"is_addressed_global_data gd =
(case gd of AddressedGlobalData _ _ _ \<Rightarrow> True | _ \<Rightarrow> False)"
definition
is_global_data :: "'g global_data \<Rightarrow> bool"
where
"is_global_data gd =
(case gd of GlobalData _ _ _ _ _ \<Rightarrow> True | _ \<Rightarrow> False)"
definition
"global_data_region symtab gd = (case gd of
GlobalData name m b g s \<Rightarrow> {symtab name ..+ m}
| ConstGlobalData name m b v chk \<Rightarrow> {symtab name ..+ m}
| AddressedGlobalData name m b \<Rightarrow> {})"
definition
"global_data_ok symtab gd =
(case gd of GlobalData nm _ ok _ _ \<Rightarrow> ok (symtab nm)
| ConstGlobalData nm _ ok _ _ \<Rightarrow> ok (symtab nm)
| AddressedGlobalData nm _ ok \<Rightarrow> ok (symtab nm))"
definition
global_data :: "string \<Rightarrow>
('g \<Rightarrow> ('a :: packed_type)) \<Rightarrow>
(('a \<Rightarrow> 'a) \<Rightarrow> 'g \<Rightarrow> 'g) \<Rightarrow> 'g global_data"
where
"global_data name getter updator
= GlobalData name (size_of TYPE('a))
(\<lambda>addr. c_guard (Ptr addr :: 'a ptr))
(to_bytes_p o getter)
(updator o K o from_bytes)"
type_synonym 'g hrs_update = "(heap_raw_state \<Rightarrow> heap_raw_state) \<Rightarrow> 'g \<Rightarrow> 'g"
definition
global_swap :: "('g \<Rightarrow> heap_raw_state) \<Rightarrow> 'g hrs_update
\<Rightarrow> (string \<Rightarrow> addr) \<Rightarrow> 'g global_data \<Rightarrow> 'g \<Rightarrow> 'g"
where
"global_swap g_hrs g_hrs_upd symtab gd \<equiv>
(case gd of GlobalData name len n g p \<Rightarrow> \<lambda>gs.
g_hrs_upd (\<lambda>_. hrs_mem_update (heap_update_list (symtab name)
(take len (g (g_hrs_upd (K undefined) gs)))) (g_hrs gs))
(p (heap_list (hrs_mem (g_hrs gs)) len (symtab name))
(g_hrs_upd (K undefined) gs))
| _ \<Rightarrow> id)"
definition
globals_swap :: "('g \<Rightarrow> heap_raw_state) \<Rightarrow> 'g hrs_update
\<Rightarrow> (string \<Rightarrow> addr) \<Rightarrow> 'g global_data list \<Rightarrow> 'g \<Rightarrow> 'g"
where
"globals_swap g_hrs g_hrs_upd symtab gds
= foldr (global_swap g_hrs g_hrs_upd symtab) gds"
lemma foldr_does_nothing_to_xf:
"\<lbrakk> \<And>x s. x \<in> set xs \<Longrightarrow> xf (f x s) = xf s \<rbrakk>
\<Longrightarrow> xf (foldr f xs s) = xf s"
by (induct xs, simp_all)
lemma intvl_empty2:
"({p ..+ n} = {}) = (n = 0)"
by (auto simp add: intvl_def)
lemma heap_update_list_commute:
"{p ..+ length xs} \<inter> {q ..+ length ys} = {}
\<Longrightarrow> heap_update_list p xs (heap_update_list q ys hp)
= heap_update_list q ys (heap_update_list p xs hp)"
apply (cases "length xs < addr_card")
apply (cases "length ys < addr_card")
apply (rule ext, simp add: heap_update_list_value)
apply blast
apply (simp_all add: addr_card intvl_overflow intvl_empty2)
done
lemma heap_update_commute:
"\<lbrakk>d,g \<Turnstile>\<^sub>t p; d,g' \<Turnstile>\<^sub>t q; \<not> TYPE('a) <\<^sub>\<tau> TYPE('b); \<not> field_of_t q p;
wf_fd (typ_info_t TYPE('a)); wf_fd (typ_info_t TYPE('b)) \<rbrakk>
\<Longrightarrow> heap_update p v (heap_update q (u :: 'b :: c_type) h)
= heap_update q u (heap_update p (v :: 'a :: c_type) h)"
apply (drule(3) h_t_valid_neq_disjoint)
apply (simp add: heap_update_def)
apply (simp add: heap_update_list_commute heap_list_update_disjoint_same
to_bytes_def length_fa_ti size_of_def Int_commute)
done
definition
global_data_swappable :: "'g global_data \<Rightarrow> 'g global_data \<Rightarrow> bool"
where
"global_data_swappable gd gd' \<equiv> case (gd, gd') of
(GlobalData _ _ _ g s, GlobalData _ _ _ g' s') \<Rightarrow>
(\<forall>v v' gs. s v (s' v' gs) = s' v' (s v gs))
\<and> (\<forall>v gs. g (s' v gs) = g gs)
\<and> (\<forall>v gs. g' (s v gs) = g' gs)
| _ \<Rightarrow> True"
definition
global_data_valid :: "('g \<Rightarrow> heap_raw_state) \<Rightarrow> 'g hrs_update
\<Rightarrow> 'g global_data \<Rightarrow> bool"
where
"global_data_valid g_hrs g_hrs_upd gd \<equiv>
(case gd of GlobalData _ l _ g s \<Rightarrow>
(\<forall>gs. length (g gs) = l)
\<and> (\<forall>v v' gs. s v (s v' gs) = s v gs)
\<and> (\<forall>gs. s (g gs) gs = gs)
\<and> (\<forall>v gs. length v = l \<longrightarrow> g (s v gs) = v)
\<and> (\<forall>v f gs. (s v (g_hrs_upd f gs)) = g_hrs_upd f (s v gs))
\<and> (\<forall>v gs. g_hrs (s v gs) = g_hrs gs)
\<and> (\<forall>f gs. g (g_hrs_upd f gs) = g gs)
\<and> l < addr_card
| _ \<Rightarrow> True)"
definition
"global_acc_valid g_hrs g_hrs_upd \<equiv>
(\<forall>f s. g_hrs (g_hrs_upd f s) = f (g_hrs s))
\<and> (\<forall>f f' s. g_hrs_upd f (g_hrs_upd f' s) = g_hrs_upd (f o f') s)
\<and> (\<forall>s. g_hrs_upd (\<lambda>_. g_hrs s) s = s)"
lemma global_swap_swap:
"\<lbrakk> global_data_region symtab gd \<inter> global_data_region symtab gd' = {};
global_acc_valid g_hrs g_hrs_upd; global_data_swappable gd gd';
global_data_valid g_hrs g_hrs_upd gd; global_data_valid g_hrs g_hrs_upd gd' \<rbrakk>
\<Longrightarrow> global_swap g_hrs g_hrs_upd symtab gd (global_swap g_hrs g_hrs_upd symtab gd' gs)
= global_swap g_hrs g_hrs_upd symtab gd' (global_swap g_hrs g_hrs_upd symtab gd gs)"
apply (clarsimp simp add: global_swap_def hrs_mem_update
global_data_swappable_def global_data_valid_def
global_acc_valid_def o_def
split: global_data.split_asm)
apply (clarsimp simp: global_data_region_def K_def)
apply (simp add: heap_list_update_disjoint_same Int_commute)
apply (simp add: hrs_mem_update_def split_def)
apply (subst heap_update_list_commute, simp_all)
done
lemma heap_update_list_double_id:
"\<lbrakk> heap_list hp n ptr = xs; length xs' = length xs;
length xs < addr_card \<rbrakk> \<Longrightarrow>
heap_update_list ptr xs (heap_update_list ptr xs' hp) = hp"
apply (rule ext, simp add: heap_update_list_value')
apply (clarsimp simp: heap_list_nth intvl_def)
done
lemma global_swap_cancel:
"\<lbrakk> global_acc_valid g_hrs g_hrs_upd;
global_data_valid g_hrs g_hrs_upd gd \<rbrakk>
\<Longrightarrow> global_swap g_hrs g_hrs_upd symtab gd (global_swap g_hrs g_hrs_upd symtab gd gs) = gs"
apply (insert heap_list_update[where
v="case gd of GlobalData _ _ _ g _ \<Rightarrow> g gs"])
apply (clarsimp simp: global_swap_def hrs_mem_update
global_data_valid_def global_acc_valid_def
split: global_data.split)
apply (simp add: hrs_mem_update_def split_def o_def)
apply (simp add: heap_update_list_double_id hrs_mem_def)
done
lemma foldr_update_commutes:
"\<lbrakk> \<And>x s. x \<in> set xs \<Longrightarrow> f (g x s) = g x (f s) \<rbrakk>
\<Longrightarrow> f (foldr g xs s) = foldr g xs (f s)"
by (induct xs, simp_all)
definition
"globals_list_valid symtab g_hrs g_hrs_upd xs =
(distinct_prop global_data_swappable xs
\<and> (\<forall>x \<in> set xs. global_data_valid g_hrs g_hrs_upd x)
\<and> (\<forall>x \<in> set xs. global_data_ok symtab x))"
lemma global_data_swappable_sym:
"global_data_swappable x y = global_data_swappable y x"
by (auto simp add: global_data_swappable_def
split: global_data.split)
lemma hrs_htd_globals_swap:
"\<lbrakk> global_acc_valid g_hrs g_hrs_upd;
\<forall>x \<in> set xs. global_data_valid g_hrs g_hrs_upd x \<rbrakk>
\<Longrightarrow> hrs_htd (g_hrs (globals_swap g_hrs g_hrs_upd symtab xs gs))
= hrs_htd (g_hrs gs)"
unfolding globals_swap_def
apply (rule foldr_does_nothing_to_xf)
apply (simp add: global_swap_def global_acc_valid_def
split: global_data.split prod.split bool.split)
done
lemmas foldr_hrs_htd_global_swap = hrs_htd_globals_swap[unfolded globals_swap_def]
definition
globals_list_distinct :: "addr set \<Rightarrow> (string \<Rightarrow> addr)
\<Rightarrow> 'g global_data list \<Rightarrow> bool"
where
"globals_list_distinct D symtab gds = distinct_prop (\<lambda>S T. S \<inter> T = {})
(D # map (global_data_region symtab) gds)"
lemma globals_swap_twice_helper:
"\<lbrakk> globals_list_valid symtab g_hrs g_hrs_upd xs;
global_acc_valid g_hrs g_hrs_upd;
globals_list_distinct D symtab xs \<rbrakk>
\<Longrightarrow> globals_swap g_hrs g_hrs_upd symtab xs (globals_swap g_hrs g_hrs_upd symtab xs gs) = gs"
apply (simp add: globals_swap_def)
apply (clarsimp simp: foldr_hrs_htd_global_swap globals_list_valid_def)
apply (induct xs)
apply simp
apply (clarsimp simp: globals_list_distinct_def)
apply (subst foldr_update_commutes[where f="global_swap g_hrs g_hrs_upd symtab v" for v])
apply (rule global_swap_swap, auto)[1]
apply (simp add: global_swap_cancel foldr_hrs_htd_global_swap)
done
lemma disjoint_int_intvl_min:
"\<lbrakk> S \<inter> {p ..+ n} = {} \<rbrakk>
\<Longrightarrow> S \<inter> {p ..+ min m n} = {}"
using intvl_start_le[where x="min m n" and y=n]
by auto
lemma ptr_set_disjoint_footprint:
"(s_footprint (p :: ('a :: c_type) ptr) \<inter> (S \<times> UNIV) = {})
\<Longrightarrow> ({ptr_val p ..+ size_of TYPE('a)} \<inter> S = {})"
by (auto simp add: s_footprint_intvl[symmetric])
lemma disjoint_heap_list_globals_swap_filter:
"\<lbrakk> global_acc_valid g_hrs g_hrs_upd;
globals_list_distinct D symtab (filter is_global_data xs);
{p ..+ n} \<subseteq> D \<rbrakk>
\<Longrightarrow> heap_list (hrs_mem (g_hrs (globals_swap g_hrs g_hrs_upd symtab xs gs))) n p
= heap_list (hrs_mem (g_hrs gs)) n p"
apply (clarsimp simp: globals_swap_def)
apply (rule foldr_does_nothing_to_xf)
apply (clarsimp simp: global_swap_def hrs_mem_update
global_acc_valid_def globals_list_distinct_def
split: global_data.split)
apply (subst heap_list_update_disjoint_same, simp_all)
apply (drule spec, drule mp, erule conjI, simp add: is_global_data_def)
apply (simp add: Int_commute global_data_region_def)
apply (rule disjoint_int_intvl_min)
apply blast
done
lemma disjoint_h_val_globals_swap_filter:
"\<lbrakk> global_acc_valid g_hrs g_hrs_upd;
globals_list_distinct D symtab (filter is_global_data xs);
s_footprint p \<subseteq> D \<times> UNIV \<rbrakk>
\<Longrightarrow> h_val (hrs_mem (g_hrs (globals_swap g_hrs g_hrs_upd symtab xs gs))) p
= h_val (hrs_mem (g_hrs gs)) p"
apply (clarsimp simp: h_val_def)
apply (subst disjoint_heap_list_globals_swap_filter[where g_hrs=g_hrs], assumption+)
apply (auto simp: s_footprint_intvl[symmetric])[1]
apply simp
done
lemma distinct_prop_filter:
"distinct_prop P (filter Q xs)
= distinct_prop (\<lambda>x y. Q x \<and> Q y \<longrightarrow> P x y) xs"
by (induct xs, auto)
lemma distinct_prop_weaken:
"\<lbrakk> distinct_prop P xs; \<And>x y. P x y \<Longrightarrow> Q x y \<rbrakk>
\<Longrightarrow> distinct_prop Q xs"
by (induct xs, simp_all)
lemma globals_list_distinct_filter:
"globals_list_distinct D symtab xs
\<Longrightarrow> globals_list_distinct D symtab (filter P xs)"
by (clarsimp simp: globals_list_distinct_def
distinct_prop_map distinct_prop_filter
elim!: distinct_prop_weaken)
lemmas disjoint_h_val_globals_swap
= disjoint_h_val_globals_swap_filter[OF _ globals_list_distinct_filter]
lemma disjoint_heap_update_globals_swap_filter:
"\<lbrakk> global_acc_valid g_hrs g_hrs_upd;
globals_list_distinct D symtab (filter is_global_data xs);
s_footprint (p :: ('a :: wf_type) ptr) \<subseteq> D \<times> UNIV \<rbrakk>
\<Longrightarrow> g_hrs_upd (hrs_mem_update (heap_update p v)) (globals_swap g_hrs g_hrs_upd symtab xs gs)
= globals_swap g_hrs g_hrs_upd symtab xs (g_hrs_upd (hrs_mem_update (heap_update p v)) gs)"
apply (clarsimp simp: globals_swap_def global_acc_valid_def)
apply (rule foldr_update_commutes)
apply (clarsimp simp: global_swap_def hrs_mem_update h_val_def
heap_update_def o_def K_def
globals_list_distinct_def
split: global_data.split)
apply (drule spec, drule mp, erule conjI, simp add: is_global_data_def)
apply (rule_tac f="g_hrs_upd" in arg_cong2[rotated])
apply (subst heap_list_update_disjoint_same, simp_all)
apply (rule ptr_set_disjoint_footprint)
apply (simp add: global_data_region_def)
apply blast
apply (clarsimp simp: hrs_mem_update_def split_def)
apply (subst heap_update_list_commute)
apply (simp add: to_bytes_def length_fa_ti size_of_def
global_data_region_def)
apply (intro disjoint_int_intvl_min
ptr_set_disjoint_footprint[unfolded size_of_def])
apply blast
apply (subst heap_list_update_disjoint_same,
simp_all add: global_data_region_def)
apply (simp add: Int_commute)
apply (intro disjoint_int_intvl_min
ptr_set_disjoint_footprint)
apply blast
done
lemmas disjoint_heap_update_globals_swap
= disjoint_heap_update_globals_swap_filter[OF _ globals_list_distinct_filter]
lemma to_bytes_p_from_bytes:
"length xs = size_of TYPE ('a :: packed_type)
\<Longrightarrow> to_bytes_p (from_bytes xs :: 'a) = xs"
by (simp add: to_bytes_p_def to_bytes_def from_bytes_def
update_ti_t_def size_of_def
field_access_update_same td_fafu_idem)
lemma to_bytes_p_inj:
"inj (to_bytes_p :: ('a :: packed_type) \<Rightarrow> _)"
apply (rule inj_onI)
apply (drule_tac f=from_bytes in arg_cong)
apply (simp add: to_bytes_p_def)
apply (subst(asm) CTypes.inv | simp)+
done
lemma global_data_valid:
"global_data_valid g_hrs g_hrs_upd (global_data p (g :: 'g \<Rightarrow> ('a :: packed_type)) s)
= (
(\<forall>v v' gs. s (\<lambda>_. v) (s (\<lambda>_. v') gs) = s (\<lambda>_. v) gs)
\<and> (\<forall>gs. s (\<lambda>_. g gs) gs = gs)
\<and> (\<forall>v f gs. s (\<lambda>_. v) (g_hrs_upd f gs) = g_hrs_upd f (s (\<lambda>_. v) gs))
\<and> (\<forall>f gs. g (g_hrs_upd f gs) = g gs)
\<and> (\<forall>v gs. g_hrs (s (\<lambda>_. v) gs) = g_hrs gs)
\<and> (\<forall>v gs. g (s (\<lambda>_. v) gs) = v))"
proof -
have all_to_xs: "\<And>P. (\<forall>(v :: 'a). P v) = (\<forall>xs. P (from_bytes xs))"
apply (safe, simp_all)
apply (drule_tac x="to_bytes_p v" in spec)
apply (simp add: to_bytes_p_from_bytes)
done
show ?thesis
apply (simp add: global_data_valid_def global_data_def)
apply (simp add: all_to_xs order_less_imp_le[OF max_size]
inj_eq[OF to_bytes_p_inj] conj_comms K_def)
apply (safe, simp_all add: to_bytes_p_from_bytes)
apply (drule_tac x="to_bytes_p (from_bytes xs :: 'a)" in spec, drule mp)
apply simp
apply (simp add: inj_eq[OF to_bytes_p_inj])
done
qed
lemma globals_swap_reorder_append:
"\<lbrakk> globals_list_valid symtab g_hrs g_hrs_upd (xs @ ys);
global_acc_valid g_hrs g_hrs_upd;
globals_list_distinct D symtab (xs @ ys) \<rbrakk>
\<Longrightarrow> globals_swap g_hrs g_hrs_upd symtab (xs @ ys) = globals_swap g_hrs g_hrs_upd symtab (ys @ xs)"
apply (induct xs)
apply simp
apply (rule ext)
apply (clarsimp simp: globals_swap_def foldr_hrs_htd_global_swap
fun_eq_iff)
apply (drule meta_mp, simp add: globals_list_valid_def)
apply (clarsimp simp: globals_list_distinct_def)
apply (rule foldr_update_commutes)
apply (clarsimp simp: ball_Un globals_list_valid_def)
apply (rule global_swap_swap, simp_all)
done
lemma globals_swap_reorder_append_n:
"\<lbrakk> globals_list_valid symtab g_hrs g_hrs_upd xs; global_acc_valid g_hrs g_hrs_upd;
globals_list_distinct D symtab xs \<rbrakk> \<Longrightarrow>
globals_swap g_hrs g_hrs_upd symtab xs = globals_swap g_hrs g_hrs_upd symtab (drop n xs @ take n xs)"
using globals_swap_reorder_append
[where xs="take n xs" and ys="drop n xs"]
by simp
lemma heap_update_list_overwrite:
"\<lbrakk> length xs = length ys; length ys < addr_card \<rbrakk>
\<Longrightarrow> heap_update_list w xs (heap_update_list w ys hp)
= heap_update_list w xs hp"
by (rule ext, simp add: heap_update_list_value)
lemma heap_list_update_eq:
"\<lbrakk> n = length v; n \<le> addr_card \<rbrakk>
\<Longrightarrow> heap_list (heap_update_list p v h) n p = v"
by (simp add: heap_list_update)
lemma globals_swap_absorb_update:
"\<lbrakk> global_acc_valid g_hrs g_hrs_upd;
\<forall>s. v (g_hrs s) = v'; length v' = m;
globals_list_valid symtab g_hrs g_hrs_upd (GlobalData nm m ok g s # xs);
globals_list_distinct D symtab (GlobalData nm m ok g s # xs) \<rbrakk>
\<Longrightarrow> s v' (globals_swap g_hrs g_hrs_upd symtab (GlobalData nm m ok g s # xs) gs)
= globals_swap g_hrs g_hrs_upd symtab (GlobalData nm m ok g s # xs)
(g_hrs_upd (\<lambda>hrs. hrs_mem_update (heap_update_list (symtab nm) (v hrs)) hrs) gs)"
apply (induct xs)
apply (simp add: globals_swap_def global_acc_valid_def)
apply (simp add: global_swap_def global_data_def hrs_mem_update)
apply (simp add: globals_list_valid_def global_data_valid_def K_def o_def)
apply (simp add: hrs_mem_def hrs_mem_update_def split_def
heap_update_def h_val_def heap_update_list_overwrite
heap_list_update_eq order_less_imp_le
del: SepCode.inv_p)
apply (drule meta_mp, simp add: globals_list_valid_def globals_list_distinct_def)+
apply (rename_tac x xs)
apply (subgoal_tac "\<forall>gs.
globals_swap g_hrs g_hrs_upd symtab (GlobalData nm m ok g s # x # xs) gs
= global_swap g_hrs g_hrs_upd symtab x (globals_swap g_hrs g_hrs_upd symtab (GlobalData nm m ok g s # xs) gs)")
apply (subgoal_tac "\<forall>gs. s v' (global_swap g_hrs g_hrs_upd symtab x gs) = global_swap g_hrs g_hrs_upd symtab x (s v' gs)")
apply (simp add: global_acc_valid_def)
apply (clarsimp simp: globals_list_valid_def global_data_swappable_def
global_data_def global_swap_def K_def
global_data_valid_def order_less_imp_le
simp del: SepCode.inv_p split: global_data.split_asm prod.split bool.split)
apply (clarsimp simp: globals_swap_def globals_list_distinct_def
global_data_def globals_list_valid_def)
apply (rule global_swap_swap, simp+)
done
lemma append_2nd_simp_backward:
"xs @ y # ys = (xs @ [y]) @ ys"
by simp
lemma globals_swap_access_mem_raw:
"\<lbrakk> global_acc_valid g_hrs g_hrs_upd;
globals_list_valid symtab g_hrs g_hrs_upd xs; globals_list_distinct D symtab xs;
GlobalData nm m ok g s \<in> set xs; size_of TYPE('a) = m \<rbrakk>
\<Longrightarrow> h_val (hrs_mem (g_hrs gs)) (Ptr (symtab nm) :: ('a :: c_type) ptr)
= from_bytes (g (globals_swap g_hrs g_hrs_upd symtab xs gs))"
apply (clarsimp simp: in_set_conv_decomp)
apply (subst append_2nd_simp_backward)
apply (subst globals_swap_reorder_append, simp+)
apply (simp add: globals_swap_def del: foldr_append split del: if_split)
apply (subgoal_tac "global_data_valid g_hrs g_hrs_upd
(GlobalData nm (size_of TYPE('a)) ok g s)")
apply (subst append_assoc[symmetric], subst foldr_append)
apply (subst foldr_does_nothing_to_xf[where xf=g])
apply (subgoal_tac "global_data_swappable (GlobalData nm (size_of TYPE('a)) ok g s) x")
apply (clarsimp simp: global_data_swappable_def global_data_def
global_swap_def global_data_valid_def
split: global_data.split_asm prod.split bool.split)
apply (simp add: globals_list_valid_def distinct_prop_append)
apply (auto simp: global_data_swappable_sym)[1]
apply (simp add: global_data_valid_def)
apply (simp add: global_data_def global_swap_def h_val_def K_def
)
apply (simp_all add: globals_list_valid_def)
done
lemma globals_swap_access_mem:
"\<lbrakk> global_data nm g u \<in> set xs;
global_acc_valid g_hrs g_hrs_upd;
globals_list_valid symtab g_hrs g_hrs_upd xs;
globals_list_distinct D symtab xs \<rbrakk>
\<Longrightarrow> g (globals_swap g_hrs g_hrs_upd symtab xs gs) = h_val (hrs_mem (g_hrs gs)) (Ptr (symtab nm))"
by (simp add: global_data_def globals_swap_access_mem_raw)
lemma globals_swap_access_mem2:
"\<lbrakk> global_data nm g u \<in> set xs;
global_acc_valid g_hrs g_hrs_upd;
globals_list_valid symtab g_hrs g_hrs_upd xs;
globals_list_distinct D symtab xs \<rbrakk>
\<Longrightarrow> g gs = h_val (hrs_mem (g_hrs (globals_swap g_hrs g_hrs_upd symtab xs gs))) (Ptr (symtab nm))"
using globals_swap_twice_helper globals_swap_access_mem
by metis
lemma globals_swap_update_mem_raw:
"\<lbrakk> global_acc_valid g_hrs g_hrs_upd;
\<forall>hmem. (v hmem) = v'; length v' = m;
globals_list_valid symtab g_hrs g_hrs_upd xs;
globals_list_distinct D symtab xs;
GlobalData nm m ok g st \<in> set xs \<rbrakk>
\<Longrightarrow> globals_swap g_hrs g_hrs_upd symtab xs (g_hrs_upd (hrs_mem_update
(\<lambda>hmem. heap_update_list (symtab nm) (v hmem) hmem)) gs)
= st v' (globals_swap g_hrs g_hrs_upd symtab xs gs)"
apply (clarsimp simp: in_set_conv_decomp)
apply (subst globals_swap_reorder_append, simp+)+
apply (rule globals_swap_absorb_update[symmetric, where D=D], simp_all)
apply (simp add: globals_list_valid_def distinct_prop_append)
apply (insert global_data_swappable_sym)
apply blast
apply (simp add: globals_list_distinct_def ball_Un distinct_prop_append)
apply blast
done
lemma to_bytes_p_from_bytes_eq:
"\<lbrakk> from_bytes ys = (v :: 'a :: packed_type); length ys = size_of TYPE('a) \<rbrakk>
\<Longrightarrow> to_bytes_p v = ys"
by (clarsimp simp: to_bytes_p_from_bytes)
lemma globals_swap_update_mem:
"\<lbrakk> global_data nm g u \<in> set xs;
global_acc_valid g_hrs g_hrs_upd;
globals_list_valid symtab g_hrs g_hrs_upd xs;
globals_list_distinct D symtab xs \<rbrakk>
\<Longrightarrow> u (\<lambda>_. v) (globals_swap g_hrs g_hrs_upd symtab xs gs)
= globals_swap g_hrs g_hrs_upd symtab xs (g_hrs_upd (hrs_mem_update
(\<lambda>hrs. heap_update (Ptr (symtab nm)) v hrs)) gs)"
unfolding global_data_def
apply (simp add: heap_update_def)
apply (subst globals_swap_update_mem_raw[where v'="to_bytes_p v", rotated -1],
assumption, simp_all add: K_def o_def)
apply clarsimp
apply (rule to_bytes_p_from_bytes_eq[symmetric], simp+)
done
lemma globals_swap_update_mem2:
assumes prems: "global_data nm g u \<in> set xs"
"global_acc_valid g_hrs g_hrs_upd"
"globals_list_valid symtab g_hrs g_hrs_upd xs"
"globals_list_distinct D symtab xs"
shows "globals_swap g_hrs g_hrs_upd symtab xs (u (\<lambda>_. v) gs)
= g_hrs_upd (hrs_mem_update (\<lambda>hrs. heap_update (Ptr (symtab nm)) v hrs))
(globals_swap g_hrs g_hrs_upd symtab xs gs)"
using prems globals_swap_twice_helper globals_swap_update_mem
by metis
lemma globals_swap_hrs_htd_update:
"\<lbrakk> global_acc_valid g_hrs g_hrs_upd;
globals_list_valid symtab g_hrs g_hrs_upd xs \<rbrakk>
\<Longrightarrow> g_hrs_upd (hrs_htd_update ufn) (globals_swap g_hrs g_hrs_upd symtab xs gs)
= globals_swap g_hrs g_hrs_upd symtab xs (g_hrs_upd (hrs_htd_update ufn) gs)"
apply (clarsimp simp: globals_swap_def hrs_htd_update
global_acc_valid_def)
apply (rule foldr_update_commutes)
apply (clarsimp simp: globals_list_valid_def, drule(1) bspec)
apply (simp add: global_swap_def o_def global_data_valid_def
hrs_htd_update
split: global_data.split_asm prod.split bool.split)
apply (simp add: hrs_htd_update_def hrs_mem_update_def split_def)
done
definition
const_global_data :: "string \<Rightarrow> ('a :: c_type) \<Rightarrow> 'g global_data"
where
"const_global_data name v = ConstGlobalData name (size_of TYPE('a))
(\<lambda>addr. c_guard (Ptr addr :: 'a ptr))
(to_bytes_p v) (\<lambda>xs. from_bytes xs = v)"
definition
addressed_global_data :: "string \<Rightarrow> ('a :: c_type) itself \<Rightarrow> 'g global_data"
where
"addressed_global_data name tp =
AddressedGlobalData name (size_of tp) (\<lambda>addr. c_guard (Ptr addr :: 'a ptr))"
lemma is_global_data_simps[simp]:
"is_global_data (global_data nm g s)"
"\<not> is_global_data (const_global_data nm v)"
"\<not> is_global_data (addressed_global_data nm tp)"
by (simp_all add: global_data_def const_global_data_def
is_global_data_def addressed_global_data_def)
lemma is_const_global_data_simps[simp]:
"is_const_global_data (const_global_data nm v)"
"\<not> is_const_global_data (global_data nm g s)"
"\<not> is_const_global_data (addressed_global_data nm tp)"
by (simp_all add: global_data_def const_global_data_def
is_const_global_data_def addressed_global_data_def)
lemma distinct_prop_swappable_optimisation:
"distinct_prop global_data_swappable (filter is_global_data gs)
\<Longrightarrow> distinct_prop (\<lambda>x y. global_data_swappable x y) gs"
apply (simp add: distinct_prop_filter is_global_data_def
global_data_swappable_def)
apply (erule distinct_prop_weaken)
apply (simp split: global_data.splits)
done
lemma globals_list_valid_optimisation:
"distinct_prop global_data_swappable (filter is_global_data gs)
\<Longrightarrow> \<forall>g \<in> set gs. global_data_valid g_hrs g_hrs_upd g
\<Longrightarrow> \<forall>g \<in> set gs. global_data_ok symtab g
\<Longrightarrow> globals_list_valid symtab g_hrs g_hrs_upd gs"
using globals_list_valid_def distinct_prop_swappable_optimisation
by blast
definition
const_globals_in_memory :: "(string \<Rightarrow> addr) \<Rightarrow> 'g global_data list
\<Rightarrow> heap_mem \<Rightarrow> bool"
where
"const_globals_in_memory symtab xs hmem =
(\<forall>gd \<in> set xs. case gd of
ConstGlobalData nm l ok v chk \<Rightarrow> chk (heap_list hmem l (symtab nm))
| _ \<Rightarrow> True)"
lemma const_globals_in_memory_h_val_eq:
"const_globals_in_memory symtab (const_global_data nm v # xs) hmem
= (h_val hmem (Ptr (symtab nm)) = v \<and> const_globals_in_memory symtab xs hmem)"
by (simp add: const_globals_in_memory_def const_global_data_def h_val_def)
lemma const_globals_in_memory_other_eqs:
"const_globals_in_memory symtab (global_data nm g s # xs) hmem
= const_globals_in_memory symtab xs hmem"
"const_globals_in_memory symtab (addressed_global_data nm tp # xs) hmem
= const_globals_in_memory symtab xs hmem"
"const_globals_in_memory symtab [] hmem"
by (auto simp add: const_globals_in_memory_def
global_data_def addressed_global_data_def)
lemmas const_globals_in_memory_eqs
= const_globals_in_memory_h_val_eq const_globals_in_memory_other_eqs
lemma const_globals_in_memory_h_val:
"\<lbrakk> const_global_data nm v \<in> set xs;
const_globals_in_memory symtab xs hmem \<rbrakk>
\<Longrightarrow> h_val hmem (Ptr (symtab nm)) = v"
apply (simp add: const_globals_in_memory_def const_global_data_def)
apply (drule (1) bspec)
apply (clarsimp simp: h_val_def)
done
lemma const_globals_in_memory_heap_update_list:
"\<lbrakk> const_globals_in_memory symtab xs hmem;
globals_list_distinct D symtab (filter is_const_global_data xs);
{p ..+ length ys} \<subseteq> D \<rbrakk>
\<Longrightarrow> const_globals_in_memory symtab xs (heap_update_list p ys hmem)"
apply (clarsimp simp: const_globals_in_memory_def globals_list_distinct_def
split: global_data.split)
apply (drule(1) bspec)
apply (drule spec, drule mp, erule conjI, simp add: is_const_global_data_def)
apply (simp add: global_data_region_def)
apply (subst heap_list_update_disjoint_same)
apply blast
apply simp
done
definition
htd_safe :: "addr set \<Rightarrow> heap_typ_desc \<Rightarrow> bool"
where
"htd_safe D htd = (dom_s htd \<subseteq> D \<times> UNIV)"
lemma const_globals_in_memory_heap_update:
"\<lbrakk> const_globals_in_memory symtab gs hmem;
globals_list_distinct D symtab gs;
ptr_safe (p :: ('a :: wf_type) ptr) htd; htd_safe D htd \<rbrakk>
\<Longrightarrow> const_globals_in_memory symtab gs (heap_update p val hmem)"
apply (simp add: split_def heap_update_def)
apply (erule const_globals_in_memory_heap_update_list,
erule globals_list_distinct_filter)
apply (clarsimp simp: ptr_safe_def htd_safe_def s_footprint_intvl[symmetric])
apply blast
done
lemma distinct_prop_memD:
"\<lbrakk> x \<in> set zs; y \<in> set zs; distinct_prop P zs \<rbrakk>
\<Longrightarrow> x = y \<or> P x y \<or> P y x"
by (induct zs, auto)
lemma const_globals_in_memory_heap_update_global:
"\<lbrakk> const_globals_in_memory symtab gs hmem;
global_data nm (getter :: 'g \<Rightarrow> 'a) setter \<in> set gs;
globals_list_distinct D symtab gs \<rbrakk>
\<Longrightarrow> const_globals_in_memory symtab gs
(heap_update (Ptr (symtab nm)) (v :: 'a :: packed_type) hmem)"
apply (simp add: heap_update_def split_def)
apply (erule const_globals_in_memory_heap_update_list[OF _ _ order_refl])
apply (clarsimp simp: globals_list_distinct_def distinct_prop_map
distinct_prop_filter)
apply (simp add: distinct_prop_weaken)
apply clarsimp
apply (drule(2) distinct_prop_memD)
apply (auto simp: global_data_region_def global_data_def
is_const_global_data_def)
done
lemma const_globals_in_memory_after_swap:
"global_acc_valid t_hrs_' t_hrs_'_update
\<Longrightarrow> globals_list_distinct D symbol_table gxs
\<Longrightarrow> const_globals_in_memory symbol_table gxs
(hrs_mem (t_hrs_' (globals_swap t_hrs_' t_hrs_'_update symbol_table gxs gs)))
= const_globals_in_memory symbol_table gxs (hrs_mem (t_hrs_' gs))"
apply (simp add: const_globals_in_memory_def)
apply (rule ball_cong, simp_all)
apply (clarsimp split: global_data.split)
apply (subst disjoint_heap_list_globals_swap_filter[OF _ _ order_refl],
assumption+, simp_all)
apply (clarsimp simp: globals_list_distinct_def distinct_prop_map
distinct_prop_filter distinct_prop_weaken)
apply (drule(2) distinct_prop_memD)
apply (clarsimp simp: is_global_data_def ball_Un distinct_prop_append
global_data_region_def Int_commute
split: global_data.split_asm)
done
ML \<open>
structure DefineGlobalsList = struct
fun dest_conjs t = (t RS @{thm conjunct1})
:: dest_conjs (t RS @{thm conjunct2})
handle THM _ => [t]
fun define_globals_list (mungedb:CalculateState.mungedb) globloc globty thy = let
open CalculateState NameGeneration
val sT = @{typ string}
val gdT = Type (@{type_name global_data}, [globty])
val ctxt = Target_Context.context_begin_named_cmd [] (globloc, Position.none) thy
fun glob (_, _, _, Local _) = error "define_globals_list: Local"
| glob (nm, typ, _, UntouchedGlobal) = let
val cname = NameGeneration.untouched_global_name nm
val init = Syntax.read_term ctxt (MString.dest cname)
in Const (@{const_name "const_global_data"}, sT --> typ --> gdT)
$ HOLogic.mk_string (MString.dest nm) $ init end
| glob (nm, typ, _, NSGlobal) = let
(* FIXME: _' hackery (or more generally, hackery) *)
val acc = (Sign.intern_const thy (global_rcd_name ^ "." ^
MString.dest nm ^ "_'"),
globty --> typ)
val upd = (Sign.intern_const thy
(global_rcd_name ^ "." ^ MString.dest nm ^ "_'" ^
Record.updateN),
(typ --> typ) --> globty --> globty)
in Const (@{const_name "global_data"}, sT
--> snd acc --> snd upd --> gdT)
$ HOLogic.mk_string (MString.dest nm) $ Const acc $ Const upd end
| glob (nm, typ, _, AddressedGlobal) =
Const (@{const_name "addressed_global_data"},
sT --> Term.itselfT typ --> gdT)
$ HOLogic.mk_string (MString.dest nm) $ Logic.mk_type typ
val naming = Binding.name o NameGeneration.global_data_name
val globs = CNameTab.dest mungedb |> map snd
|> filter (fn v => case #4 v of Local _ => false | _ => true)
|> map (fn g => (g |> #1 |> MString.dest |> naming, glob g))
val (xs, ctxt) = fold_map (fn (nm, tm) => Local_Theory.define
((nm, NoSyn), ((Thm.def_binding nm, []), tm))) globs ctxt
val gdTs = HOLogic.mk_list gdT (map fst xs)
val ((gdl, (_, gdl_def)), ctxt) = Local_Theory.define
((@{binding global_data_list}, NoSyn),
((@{binding global_data_list_def}, []), gdTs)) ctxt
val (_, ctxt) = Local_Theory.note ((@{binding "global_data_defs"}, []),
map (snd #> snd) xs) ctxt
val lT = HOLogic.listT gdT
val setT = HOLogic.mk_setT gdT
val setC = Const (@{const_name set}, lT --> setT)
val thm = Goal.prove ctxt [] [] (HOLogic.mk_Trueprop
(Const (@{const_name less_eq}, setT --> setT --> HOLogic.boolT)
$ (setC $ gdTs) $ (setC $ gdl)))
(K (simp_tac (put_simpset HOL_basic_ss ctxt addsimps @{thms order_refl}
addsimps [gdl_def]) 1))
val mems = simplify (put_simpset HOL_basic_ss ctxt addsimps
@{thms set_simps insert_subset empty_subsetI simp_thms}) thm
|> dest_conjs
val (_, ctxt) = Local_Theory.note ((@{binding "global_data_mems"}, []),
mems) ctxt
in Local_Theory.exit_global ctxt end
fun define_globals_list_i s globty thy = let
val {base = localename,...} = OS.Path.splitBaseExt (OS.Path.file s)
val globloc = suffix HPInter.globalsN localename
in define_globals_list (CalculateState.get_mungedb thy s |> the)
globloc globty thy
end
end
\<close>
lemma globals_list_distinct_filter_member:
"x \<in> set xs \<Longrightarrow> globals_list_distinct D symtab xs
\<Longrightarrow> \<not> P x
\<Longrightarrow> globals_list_distinct (global_data_region symtab x) symtab
(filter P xs)"
apply (clarsimp simp: globals_list_distinct_def)
apply (rule conjI)
apply (clarsimp simp: in_set_conv_decomp[where x="x"]
distinct_prop_append)
apply auto[1]
apply (simp add: distinct_prop_map distinct_prop_filter)
apply (erule distinct_prop_weaken, simp)
done
lemma s_footprint_intvl_subset:
"s_footprint (p :: 'a ptr) \<subseteq> {ptr_val p ..+ size_of TYPE ('a :: c_type)} \<times> UNIV"
by (auto simp: s_footprint_def s_footprint_untyped_def
intvl_def size_of_def)
lemma h_val_globals_swap_in_const_global:
"\<lbrakk> global_acc_valid g_hrs g_hrs_upd;
globals_list_distinct D symtab xs;
const_global_data s (v :: 'a :: c_type) \<in> set xs;
unat offs + size_of TYPE('b) \<le> size_of TYPE('a) \<rbrakk>
\<Longrightarrow> h_val (hrs_mem (g_hrs (globals_swap g_hrs g_hrs_upd symtab xs gs)))
(Ptr (symtab s + offs) :: ('b :: c_type) ptr)
= h_val (hrs_mem (g_hrs gs)) (Ptr (symtab s + offs))"
apply (erule disjoint_h_val_globals_swap_filter,
erule(1) globals_list_distinct_filter_member)
apply simp
apply (rule order_trans, rule s_footprint_intvl_subset)
apply (simp add: global_data_region_def const_global_data_def
Times_subset_cancel2)
apply (erule intvl_sub_offset)
done
lemmas h_val_globals_swap_in_const_global_both
= h_val_globals_swap_in_const_global
h_val_globals_swap_in_const_global[where offs=0, simplified]
lemma const_globals_in_memory_to_h_val_with_swap:
"\<lbrakk> global_acc_valid g_hrs g_hrs_upd;
globals_list_distinct D symtab xs;
const_global_data nm v \<in> set xs;
const_globals_in_memory symtab xs (hrs_mem (g_hrs gs)) \<rbrakk>
\<Longrightarrow> v = h_val (hrs_mem (g_hrs (globals_swap g_hrs g_hrs_upd symtab xs gs)))
(Ptr (symtab nm))"
apply (subst disjoint_h_val_globals_swap_filter, assumption,
erule(1) globals_list_distinct_filter_member)
apply simp
apply (simp add: global_data_region_def const_global_data_def)
apply (rule order_trans, rule s_footprint_intvl_subset)
apply simp
apply (erule(1) const_globals_in_memory_h_val[symmetric])
done
text \<open>This alternative ptr_safe definition will apply to all
global pointers given globals_list_distinct etc. It supports
the same nonoverlapping properties with h_t_valid as h_t_valid
itself.\<close>
definition
ptr_inverse_safe :: "('a :: mem_type) ptr \<Rightarrow> heap_typ_desc \<Rightarrow> bool"
where
"ptr_inverse_safe p htd = (c_guard p
\<and> (fst ` s_footprint p \<inter> fst ` dom_s htd = {}))"
lemma global_data_implies_ptr_inverse_safe:
"\<lbrakk> global_data nm (accr :: 'a \<Rightarrow> ('b :: packed_type)) updr \<in> set glist;
globals_list_distinct D symtab glist;
globals_list_valid symtab t_hrs t_hrs_upd glist;
htd_safe D htd
\<rbrakk>
\<Longrightarrow> ptr_inverse_safe (Ptr (symtab nm) :: 'b ptr) htd"
apply (clarsimp simp add: ptr_inverse_safe_def globals_list_valid_def
htd_safe_def globals_list_distinct_def)
apply (drule(1) bspec)+
apply (simp add: global_data_region_def global_data_ok_def global_data_def)
apply (auto dest!: s_footprint_intvl_subset[THEN subsetD])
done
ML \<open>
fun add_globals_swap_rewrites member_thms ctxt = let
fun cpat pat = Thm.cterm_of ctxt (Proof_Context.read_term_pattern ctxt pat)
val gav = Proof_Context.get_thm ctxt "global_acc_valid"
val glv = Proof_Context.get_thm ctxt "globals_list_valid"
val gld = Proof_Context.get_thm ctxt "globals_list_distinct"
val acc = [Thm.trivial (cpat "PROP ?P"), gav, glv, gld]
MRS @{thm globals_swap_access_mem2}
val upd = [Thm.trivial (cpat "PROP ?P"), gav, glv, gld]
MRS @{thm globals_swap_update_mem2}
val cg_with_swap = [gav, gld]
MRS @{thm const_globals_in_memory_to_h_val_with_swap}
val pinv_safe = [Thm.trivial (cpat "PROP ?P"), gld, glv]
MRS @{thm global_data_implies_ptr_inverse_safe}
val empty_ctxt = put_simpset HOL_basic_ss ctxt
fun unfold_mem thm = let
val (x, _) = HOLogic.dest_mem (HOLogic.dest_Trueprop (Thm.concl_of thm))
val (s, _) = dest_Const (head_of x)
in if s = @{const_name global_data} orelse s = @{const_name const_global_data}
orelse s = @{const_name addressed_global_data}
then thm
else simplify (empty_ctxt addsimps [Proof_Context.get_thm ctxt (s ^ "_def")]) thm
end
val member_thms = map unfold_mem member_thms
val globals_swap_rewrites = member_thms RL [acc, upd]
val const_globals_rewrites = member_thms RL @{thms const_globals_in_memory_h_val[symmetric]}
val const_globals_swap_rewrites = member_thms RL [cg_with_swap]
val pinv_safe_intros = member_thms RL [pinv_safe]
in ctxt
|> Local_Theory.note ((@{binding "globals_swap_rewrites"}, []),
globals_swap_rewrites)
|> snd
|> Local_Theory.note ((@{binding "const_globals_rewrites"}, []),
const_globals_rewrites)
|> snd
|> Local_Theory.note ((@{binding "const_globals_rewrites_with_swap"}, []),
const_globals_swap_rewrites)
|> snd
|> Local_Theory.note ((@{binding "pointer_inverse_safe_global_rules"}, []),
pinv_safe_intros)
|> snd
end
\<close>
end