-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathSep_ImpI.thy
99 lines (80 loc) · 3.25 KB
/
Sep_ImpI.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
theory Sep_ImpI
imports Sep_Provers Sep_Cancel_Set Sep_Tactic_Helpers
begin
lemma sep_wand_lens: "(\<And>s. T s = Q s) \<Longrightarrow> ((P \<longrightarrow>* T) \<and>* R) s \<Longrightarrow> ((P \<longrightarrow>* Q) \<and>* R) s"
apply (sep_erule_full refl_imp)
apply (clarsimp simp: sep_impl_def)
done
lemma sep_wand_lens': "(\<And>s. T s = Q s) \<Longrightarrow> ((T \<longrightarrow>* P) \<and>* R) s \<Longrightarrow> ((Q \<longrightarrow>* P) \<and>* R) s"
apply (sep_erule_full refl_imp, erule sep_curry[rotated])
apply (clarsimp)
apply (erule sep_mp)
done
(* Removing wands from the conclusions *)
ML \<open>
fun sep_wand_lens ctxt = resolve_tac ctxt[@{thm sep_wand_lens}]
fun sep_wand_lens' ctxt = resolve_tac ctxt [@{thm sep_wand_lens'}]
fun sep_wand_rule_tac tac ctxt =
let
val r = rotator' ctxt
in
tac |> r (sep_wand_lens' ctxt) |> r (sep_wand_lens ctxt) |> r (sep_select ctxt)
end
fun sep_wand_rule_tac' thms ctxt =
let
val r = rotator' ctxt
in
eresolve_tac ctxt thms |> r (sep_wand_lens ctxt) |> r (sep_select ctxt) |> r (sep_asm_select ctxt)
end
fun sep_wand_rule_method thms ctxt = SIMPLE_METHOD' (sep_wand_rule_tac thms ctxt)
fun sep_wand_rule_method' thms ctxt = SIMPLE_METHOD' (sep_wand_rule_tac' thms ctxt)
\<close>
lemma sep_wand_match:
"(\<And>s. Q s \<Longrightarrow> Q' s) \<Longrightarrow> (R \<longrightarrow>* R') s ==> (Q \<and>* R \<longrightarrow>* Q' \<and>* R') s"
apply (erule sep_curry[rotated])
apply (sep_select_asm 1 3)
apply (sep_drule (direct) sep_mp_frame)
apply (sep_erule_full refl_imp, clarsimp)
done
lemma sep_wand_trivial: "(\<And>s. Q s \<Longrightarrow> Q' s) \<Longrightarrow> R' s ==> (Q \<longrightarrow>* Q' \<and>* R') s"
apply (erule sep_curry[rotated])
apply (sep_erule_full refl_imp)
apply (clarsimp)
done
lemma sep_wand_collapse: "(P \<and>* Q \<longrightarrow>* R) s \<Longrightarrow> (P \<longrightarrow>* Q \<longrightarrow>* R) s "
apply (erule sep_curry[rotated])+
apply (clarsimp simp: sep_conj_assoc)
apply (erule sep_mp)
done
lemma sep_wand_match_less_safe:
assumes drule: " \<And>s. (Q' \<and>* R) s \<Longrightarrow> ((P \<longrightarrow>* R') \<and>* Q' \<and>* R'' ) s "
shows "(Q' \<and>* R) s \<Longrightarrow> (\<And>s. Q' s \<Longrightarrow> Q s) \<Longrightarrow> ((P \<longrightarrow>* Q \<and>* R') \<and>* R'') s"
apply (drule drule)
apply (sep_erule_full refl_imp)
apply (erule sep_conj_sep_impl)
apply (clarsimp simp: sep_conj_assoc)
apply (sep_select_asm 1 3)
apply (sep_drule (direct) sep_mp_frame, sep_erule_full refl_imp)
apply (clarsimp)
done
ML \<open>
fun sep_match_trivial_tac ctxt =
let
fun flip f a b = f b a
val sep_cancel = flip (sep_apply_tactic ctxt) (SepCancel_Rules.get ctxt |> rev)
fun f x = x |> rotate_prems ~1 |> (fn x => [x]) |> eresolve0_tac |> sep_cancel
val sep_thms = map f [@{thm sep_wand_trivial}, @{thm sep_wand_match}]
in
sep_wand_rule_tac (resolve0_tac [@{thm sep_rule}] THEN' FIRST' sep_thms) ctxt
end
fun sep_safe_method ctxt = SIMPLE_METHOD' (sep_match_trivial_tac ctxt)
\<close>
method_setup sep_safe = \<open>
Scan.succeed (sep_safe_method)
\<close>
end