forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcell_locking.hh
559 lines (477 loc) · 19.1 KB
/
cell_locking.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
/*
* Copyright (C) 2017-present ScyllaDB
*/
/*
* SPDX-License-Identifier: AGPL-3.0-or-later
*/
#pragma once
#include <exception>
#include <boost/intrusive/unordered_set.hpp>
#include "utils/assert.hh"
#include "utils/small_vector.hh"
#include "mutation/mutation_partition.hh"
#include "utils/xx_hasher.hh"
#include "db/timeout_clock.hh"
#include "utils/log.hh"
extern logging::logger cell_locker_log;
class cells_range {
using ids_vector_type = utils::small_vector<column_id, 5>;
position_in_partition_view _position;
ids_vector_type _ids;
public:
using iterator = ids_vector_type::iterator;
using const_iterator = ids_vector_type::const_iterator;
cells_range()
: _position(position_in_partition_view(position_in_partition_view::static_row_tag_t())) { }
explicit cells_range(position_in_partition_view pos, const row& cells)
: _position(pos)
{
_ids.reserve(cells.size());
cells.for_each_cell([this] (auto id, auto&&) {
_ids.emplace_back(id);
});
}
position_in_partition_view position() const { return _position; }
bool empty() const { return _ids.empty(); }
auto begin() const { return _ids.begin(); }
auto end() const { return _ids.end(); }
};
class partition_cells_range {
const mutation_partition& _mp;
public:
class iterator {
const mutation_partition& _mp;
std::optional<mutation_partition::rows_type::const_iterator> _position;
cells_range _current;
public:
explicit iterator(const mutation_partition& mp)
: _mp(mp)
, _current(position_in_partition_view(position_in_partition_view::static_row_tag_t()), mp.static_row().get())
{ }
iterator(const mutation_partition& mp, mutation_partition::rows_type::const_iterator it)
: _mp(mp)
, _position(it)
{ }
iterator& operator++() {
if (!_position) {
_position = _mp.clustered_rows().begin();
} else {
++(*_position);
}
if (_position != _mp.clustered_rows().end()) {
auto it = *_position;
_current = cells_range(position_in_partition_view(position_in_partition_view::clustering_row_tag_t(), it->key()),
it->row().cells());
}
return *this;
}
iterator operator++(int) {
iterator it(*this);
operator++();
return it;
}
cells_range& operator*() {
return _current;
}
cells_range* operator->() {
return &_current;
}
bool operator==(const iterator& other) const {
return _position == other._position;
}
};
public:
explicit partition_cells_range(const mutation_partition& mp) : _mp(mp) { }
iterator begin() const {
return iterator(_mp);
}
iterator end() const {
return iterator(_mp, _mp.clustered_rows().end());
}
};
class locked_cell;
struct cell_locker_stats {
uint64_t lock_acquisitions = 0;
uint64_t operations_waiting_for_lock = 0;
};
class cell_locker {
private:
class partition_entry;
struct cell_address {
position_in_partition position;
column_id id;
};
class cell_entry : public bi::unordered_set_base_hook<bi::link_mode<bi::auto_unlink>>,
public enable_lw_shared_from_this<cell_entry> {
partition_entry& _parent;
cell_address _address;
db::timeout_semaphore _semaphore { 0 };
friend class cell_locker;
public:
cell_entry(partition_entry& parent, position_in_partition position, column_id id)
: _parent(parent)
, _address { std::move(position), id }
{ }
// Upgrades cell_entry to another schema.
// Changes the value of cell_address, so cell_entry has to be
// temporarily removed from its parent partition_entry.
// Returns true if the cell_entry still exist in the new schema and
// should be reinserted.
bool upgrade(const schema& from, const schema& to, column_kind kind) noexcept {
auto& old_column_mapping = from.get_column_mapping();
auto& column = old_column_mapping.column_at(kind, _address.id);
auto cdef = to.get_column_definition(column.name());
if (!cdef) {
return false;
}
_address.id = cdef->id;
return true;
}
const position_in_partition& position() const {
return _address.position;
}
future<> lock(db::timeout_clock::time_point _timeout) {
return _semaphore.wait(_timeout);
}
void unlock() {
_semaphore.signal();
}
~cell_entry() {
if (!is_linked()) {
return;
}
unlink();
if (!--_parent._cell_count) {
delete &_parent;
}
}
class hasher {
const ::schema* _schema; // pointer instead of reference for default assignment
public:
explicit hasher(const schema& s) : _schema(&s) { }
size_t operator()(const cell_address& ca) const {
xx_hasher hasher;
ca.position.feed_hash(hasher, *_schema);
::feed_hash(hasher, ca.id);
return static_cast<size_t>(hasher.finalize_uint64());
}
size_t operator()(const cell_entry& ce) const {
return operator()(ce._address);
}
};
class equal_compare {
position_in_partition::equal_compare _cmp;
private:
bool do_compare(const cell_address& a, const cell_address& b) const {
return a.id == b.id && _cmp(a.position, b.position);
}
public:
explicit equal_compare(const schema& s) : _cmp(s) { }
bool operator()(const cell_address& ca, const cell_entry& ce) const {
return do_compare(ca, ce._address);
}
bool operator()(const cell_entry& ce, const cell_address& ca) const {
return do_compare(ca, ce._address);
}
bool operator()(const cell_entry& a, const cell_entry& b) const {
return do_compare(a._address, b._address);
}
};
};
class partition_entry : public bi::unordered_set_base_hook<bi::link_mode<bi::auto_unlink>> {
using cells_type = bi::unordered_set<cell_entry,
bi::equal<cell_entry::equal_compare>,
bi::hash<cell_entry::hasher>,
bi::constant_time_size<false>>;
static constexpr size_t initial_bucket_count = 16;
using max_load_factor = std::ratio<3, 4>;
dht::decorated_key _key;
cell_locker& _parent;
size_t _rehash_at_size = compute_rehash_at_size(initial_bucket_count);
std::unique_ptr<cells_type::bucket_type[]> _buckets; // TODO: start with internal storage?
size_t _cell_count = 0; // cells_type::empty() is not O(1) if the hook is auto-unlink
cells_type::bucket_type _internal_buckets[initial_bucket_count];
cells_type _cells;
schema_ptr _schema;
friend class cell_entry;
private:
static constexpr size_t compute_rehash_at_size(size_t bucket_count) {
return bucket_count * max_load_factor::num / max_load_factor::den;
}
// Try to rehash the set, if needed.
// The function may fail silently on bad_alloc (logging a warning).
// Rehashing would be retried at a later time on failure.
void maybe_rehash() {
if (_cell_count >= _rehash_at_size) {
auto new_bucket_count = std::min(_cells.bucket_count() * 2, _cells.bucket_count() + 1024);
try {
auto buckets = std::make_unique<cells_type::bucket_type[]>(new_bucket_count);
_cells.rehash(cells_type::bucket_traits(buckets.get(), new_bucket_count));
_buckets = std::move(buckets);
} catch (const std::bad_alloc&) {
cell_locker_log.warn("Could not rehash cell_locker partition cells set: bucket_count={} new_bucket_count={}: {}", _cells.bucket_count(), new_bucket_count, std::current_exception());
}
// Attempt rehash at the new size in both success and failure paths.
// On failure, we don't want to retry too soon since it may take some time
// for memory to free up.
_rehash_at_size = compute_rehash_at_size(new_bucket_count);
}
}
public:
partition_entry(schema_ptr s, cell_locker& parent, const dht::decorated_key& dk)
: _key(dk)
, _parent(parent)
, _cells(cells_type::bucket_traits(_internal_buckets, initial_bucket_count),
cell_entry::hasher(*s), cell_entry::equal_compare(*s))
, _schema(s)
{ }
~partition_entry() {
if (is_linked()) {
_parent._partition_count--;
}
}
// Upgrades partition entry to new schema. Returns false if all
// cell_entries has been removed during the upgrade.
bool upgrade(schema_ptr new_schema);
void insert(lw_shared_ptr<cell_entry> cell) {
_cells.insert(*cell);
_cell_count++;
maybe_rehash();
}
cells_type& cells() {
return _cells;
}
struct hasher {
size_t operator()(const dht::decorated_key& dk) const {
return std::hash<dht::decorated_key>()(dk);
}
size_t operator()(const partition_entry& pe) const {
return operator()(pe._key);
}
};
class equal_compare {
dht::decorated_key_equals_comparator _cmp;
public:
explicit equal_compare(const schema& s) : _cmp(s) { }
bool operator()(const dht::decorated_key& dk, const partition_entry& pe) {
return _cmp(dk, pe._key);
}
bool operator()(const partition_entry& pe, const dht::decorated_key& dk) {
return _cmp(dk, pe._key);
}
bool operator()(const partition_entry& a, const partition_entry& b) {
return _cmp(a._key, b._key);
}
};
};
using partitions_type = bi::unordered_set<partition_entry,
bi::equal<partition_entry::equal_compare>,
bi::hash<partition_entry::hasher>,
bi::constant_time_size<false>>;
static constexpr size_t initial_bucket_count = 4 * 1024;
using max_load_factor = std::ratio<3, 4>;
std::unique_ptr<partitions_type::bucket_type[]> _buckets;
partitions_type _partitions;
size_t _partition_count = 0;
size_t _rehash_at_size = compute_rehash_at_size(initial_bucket_count);
schema_ptr _schema;
// partitions_type uses equality comparator which keeps a reference to the
// original schema, we must ensure that it doesn't die.
schema_ptr _original_schema;
cell_locker_stats& _stats;
friend class locked_cell;
private:
struct locker;
static constexpr size_t compute_rehash_at_size(size_t bucket_count) {
return bucket_count * max_load_factor::num / max_load_factor::den;
}
// Try to rehash the set, if needed.
// The function may fail silently on bad_alloc (logging a warning).
// Rehashing would be retried at a later time on failure.
void maybe_rehash() {
if (_partition_count >= _rehash_at_size) {
auto new_bucket_count = std::min(_partitions.bucket_count() * 2, _partitions.bucket_count() + 64 * 1024);
try {
auto buckets = std::make_unique<partitions_type::bucket_type[]>(new_bucket_count);
_partitions.rehash(partitions_type::bucket_traits(buckets.get(), new_bucket_count));
_buckets = std::move(buckets);
} catch (const std::bad_alloc&) {
cell_locker_log.warn("Could not rehash cell_locker partitions set: bucket_count={} new_bucket_count={}: {}", _partitions.bucket_count(), new_bucket_count, std::current_exception());
}
// Attempt rehash at the new size in both success and failure paths.
// On failure, we don't want to retry too soon since it may take some time
// for memory to free up.
_rehash_at_size = compute_rehash_at_size(new_bucket_count);
}
}
public:
explicit cell_locker(schema_ptr s, cell_locker_stats& stats)
: _buckets(std::make_unique<partitions_type::bucket_type[]>(initial_bucket_count))
, _partitions(partitions_type::bucket_traits(_buckets.get(), initial_bucket_count),
partition_entry::hasher(), partition_entry::equal_compare(*s))
, _schema(s)
, _original_schema(std::move(s))
, _stats(stats)
{ }
~cell_locker() {
SCYLLA_ASSERT(_partitions.empty());
}
void set_schema(schema_ptr s) {
_schema = s;
}
schema_ptr schema() const {
return _schema;
}
// partition_cells_range is required to be in cell_locker::schema()
future<std::vector<locked_cell>> lock_cells(const dht::decorated_key& dk, partition_cells_range&& range,
db::timeout_clock::time_point timeout);
};
class locked_cell {
lw_shared_ptr<cell_locker::cell_entry> _entry;
public:
explicit locked_cell(lw_shared_ptr<cell_locker::cell_entry> entry)
: _entry(std::move(entry)) { }
locked_cell(const locked_cell&) = delete;
locked_cell(locked_cell&&) = default;
~locked_cell() {
if (_entry) {
_entry->unlock();
}
}
};
struct cell_locker::locker {
cell_entry::hasher _hasher;
cell_entry::equal_compare _eq_cmp;
partition_entry& _partition_entry;
partition_cells_range _range;
partition_cells_range::iterator _current_ck;
cells_range::const_iterator _current_cell;
db::timeout_clock::time_point _timeout;
std::vector<locked_cell> _locks;
cell_locker_stats& _stats;
private:
void update_ck() {
if (!is_done()) {
_current_cell = _current_ck->begin();
}
}
future<> lock_next();
bool is_done() const { return _current_ck == _range.end(); }
public:
explicit locker(const ::schema& s, cell_locker_stats& st, partition_entry& pe, partition_cells_range&& range, db::timeout_clock::time_point timeout)
: _hasher(s)
, _eq_cmp(s)
, _partition_entry(pe)
, _range(std::move(range))
, _current_ck(_range.begin())
, _timeout(timeout)
, _stats(st)
{
update_ck();
}
locker(const locker&) = delete;
locker(locker&&) = delete;
future<> lock_all() {
// Cannot defer before first call to lock_next().
return lock_next().then([this] {
return do_until([this] { return is_done(); }, [this] {
return lock_next();
});
});
}
std::vector<locked_cell> get() && { return std::move(_locks); }
};
inline
future<std::vector<locked_cell>> cell_locker::lock_cells(const dht::decorated_key& dk, partition_cells_range&& range, db::timeout_clock::time_point timeout) {
partition_entry::hasher pe_hash;
partition_entry::equal_compare pe_eq(*_schema);
auto it = _partitions.find(dk, pe_hash, pe_eq);
std::unique_ptr<partition_entry> partition;
if (it == _partitions.end()) {
partition = std::make_unique<partition_entry>(_schema, *this, dk);
} else if (!it->upgrade(_schema)) {
partition = std::unique_ptr<partition_entry>(&*it);
_partition_count--;
_partitions.erase(it);
}
if (partition) {
std::vector<locked_cell> locks;
for (auto&& r : range) {
if (r.empty()) {
continue;
}
for (auto&& c : r) {
auto cell = make_lw_shared<cell_entry>(*partition, position_in_partition(r.position()), c);
_stats.lock_acquisitions++;
partition->insert(cell);
locks.emplace_back(std::move(cell));
}
}
if (!locks.empty()) {
_partitions.insert(*partition.release());
_partition_count++;
maybe_rehash();
}
return make_ready_future<std::vector<locked_cell>>(std::move(locks));
}
auto l = std::make_unique<locker>(*_schema, _stats, *it, std::move(range), timeout);
auto f = l->lock_all();
return f.then([l = std::move(l)] {
return std::move(*l).get();
});
}
inline
future<> cell_locker::locker::lock_next() {
while (!is_done()) {
if (_current_cell == _current_ck->end()) {
++_current_ck;
update_ck();
continue;
}
auto cid = *_current_cell++;
cell_address ca { position_in_partition(_current_ck->position()), cid };
auto it = _partition_entry.cells().find(ca, _hasher, _eq_cmp);
if (it != _partition_entry.cells().end()) {
_stats.operations_waiting_for_lock++;
return it->lock(_timeout).then([this, ce = it->shared_from_this()] () mutable {
_stats.operations_waiting_for_lock--;
_stats.lock_acquisitions++;
_locks.emplace_back(std::move(ce));
});
}
auto cell = make_lw_shared<cell_entry>(_partition_entry, position_in_partition(_current_ck->position()), cid);
_stats.lock_acquisitions++;
_partition_entry.insert(cell);
_locks.emplace_back(std::move(cell));
}
return make_ready_future<>();
}
inline
bool cell_locker::partition_entry::upgrade(schema_ptr new_schema) {
if (_schema == new_schema) {
return true;
}
auto buckets = std::make_unique<cells_type::bucket_type[]>(_cells.bucket_count());
auto cells = cells_type(cells_type::bucket_traits(buckets.get(), _cells.bucket_count()),
cell_entry::hasher(*new_schema), cell_entry::equal_compare(*new_schema));
_cells.clear_and_dispose([&] (cell_entry* cell_ptr) noexcept {
auto& cell = *cell_ptr;
auto kind = cell.position().is_static_row() ? column_kind::static_column
: column_kind::regular_column;
auto reinsert = cell.upgrade(*_schema, *new_schema, kind);
if (reinsert) {
cells.insert(cell);
} else {
_cell_count--;
}
});
// bi::unordered_set move assignment is actually a swap.
// Original _buckets cannot be destroyed before the container using them is
// so we need to explicitly make sure that the original _cells is no more.
_cells = std::move(cells);
auto destroy = [] (auto) { };
destroy(std::move(cells));
_buckets = std::move(buckets);
_schema = new_schema;
return _cell_count;
}