-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdhmm.m
executable file
·165 lines (119 loc) · 3.4 KB
/
dhmm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
% function [E,P,Pi,LL]=dhmm(X,alphabet,K,cyc,tol);
%
% simple Hidden Markov Model - variable lengths and discrete symbols
%
% X - cell array of strings
% alphabet - string of characters
% K - number of states (default 2)
% cyc - maximum number of cycles of Baum-Welch (default 100)
% tol - termination tolerance (prop change in likelihood) (default 0.0001)
%
% E - observation emission probabilities
% P - state transition probabilities
% Pi - initial state prior probabilities
% LL - log likelihood curve
%
% Iterates until a proportional change < tol in the log likelihood
% or cyc steps of Baum-Welch
function [E,P,Pi,LL]=dhmm(X,alphabet,K,cyc,tol)
LA = length(alphabet);
% number of sequences
N=length(X);
% length of each sequence
T=ones(1,N);
for n=1:N,
T(n)=length(X{n});
end;
TMAX = max(T);
epsi=1e-10;
if nargin<5 tol=0.0001; end;
if nargin<4 cyc=100; end;
if nargin<3 K=2; end;
fprintf('\n********************************************************************\n');
fprintf('Training %i sequences of maximum length %i from an alphabet of size %i\n',N,TMAX,LA);
fprintf('HMM with %i hidden states\n',K);
fprintf('********************************************************************\n');
E = (0.1*rand(LA,K)+ones(LA,K))/LA;
E = cdiv(E,sum(E,1));
B=zeros(TMAX,K);
Pi= rand(1,K);
Pi=Pi/sum(Pi);
% transition matrix
P = rand(K);
P=rdiv(P,sum(P,2));
% This is useful if the transition matrix is initialized with many zeros
% i.e. for a left-to-right HMM
P=sparse(P);
LL=[];
lik=0;
for cycle=1:cyc
%%%% FORWARD-BACKWARD
Gammainit=zeros(1,K);
Gammasum=zeros(1,K);
Gammaksum = zeros(LA,K);
Scale=zeros(TMAX,1);
sxi=sparse(K,K);
for n=1:N
alpha=zeros(T(n),K);
beta=zeros(T(n),K);
gamma=zeros(T(n),K);
gammaksum = zeros(LA,K);
% Inital values of B = Prob(output|s_i), given data X
Xcurrent=X{n};
for i=1:T(n)
m = findstr(alphabet,Xcurrent(i));
if (m == 0)
fprintf('symbol not found\n');
return;
end
B(i,:) = E(m,:);
end;
scale=zeros(T(n),1);
alpha(1,:)=Pi(:)'.*B(1,:);
scale(1)=sum(alpha(1,:));
alpha(1,:)=alpha(1,:)/scale(1);
for i=2:T(n)
alpha(i,:)=(alpha(i-1,:)*P).*B(i,:);
scale(i)=sum(alpha(i,:));
alpha(i,:)=alpha(i,:)/scale(i);
end;
beta(T(n),:)=ones(1,K)/scale(T(n));
for i=T(n)-1:-1:1
beta(i,:)=(beta(i+1,:).*B(i+1,:))*(P')/scale(i);
end;
gamma=(alpha.*beta)+epsi;
gamma=rdiv(gamma,sum(gamma,2));
gammasum=sum(gamma);
for i = 1:T(n)
m = findstr(alphabet,Xcurrent(i));
gammaksum(m,:) = gammaksum(m,:) + gamma(i,:);
end;
for i=1:T(n)-1
t=P.*( alpha(i,:)' * (beta(i+1,:).*B(i+1,:)));
sxi=sxi+t/sum(t(:));
end;
Gammainit=Gammainit+gamma(1,:);
Gammasum=Gammasum+gammasum;
Gammaksum = Gammaksum + gammaksum;
for i=1:T(n)-1
Scale(i,:) = Scale(i,:) + log(scale(i,:));
end;
Scale(T(n),:) = Scale(T(n),:) + log(scale(T(n),:));
end;
%%%% M STEP
% outputs
E = cdiv(Gammaksum,Gammasum);
% transition matrix
P=sparse(rdiv(sxi,sum(sxi,2)));
% priors
Pi=Gammainit/sum(Gammainit);
oldlik=lik;
lik=sum(Scale);
LL=[LL lik];
fprintf('\ncycle %i log likelihood = %f ',cycle,lik);
if (cycle<=2) likbase=lik;
elseif (lik<(oldlik - 1e-6)) fprintf('violation');
elseif ((lik-likbase)<(1 + tol)*(oldlik-likbase)|~finite(lik))
fprintf('\nend\n'); return;
end;
end