-
Notifications
You must be signed in to change notification settings - Fork 2
/
SimCopy.R
545 lines (519 loc) · 17.3 KB
/
SimCopy.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
#
# Copyright (C) 2013 EMBL - European Bioinformatics Institute
#
# This program is free software: you can redistribute it
# and/or modify it under the terms of the GNU General
# Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be
# useful, but WITHOUT ANY WARRANTY; without even the
# implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# Neither the institution name nor the name simcopy
# can be used to endorse or promote products derived from
# this software without prior written permission. For
# written permission, please contact <[email protected]>.
# Products derived from this software may not be called
# simcopy nor may simcopy appear in their
# names without prior written permission of the developers.
# You should have received a copy of the GNU General Public
# License along with this program. If not, see
# <http://www.gnu.org/licenses/>.
##########################################################################/**
#
# @RdocClass SimCopy
# \alias{simcopy}
#
# @title "The SimCopy class"
#
# \description{
#
# The \code{SimCopy} class simulates the evolution of copy number profiles along an input tree. It relies on the \pkg{\link{PhyloSim}}
# package for performing the simulations by encoding the genomic regions as sites in sequences and using modified processes acting on them.
# Please note, that the \code{SimCopy} simulations are restricted to a single chromosome.
#
# The genomes are encoded as a sequence of sites containing integers identifying genomic regions. Negative integers represent
# inverted genomic regions.
#
# The following processes are supported:
#
# \itemize{
# \item \code{deletion} - deletes genomic regions.
# \item \code{duplication} - duplicates genomic regions.
# \item \code{inversion} - changes the orientation of the genomic regions by taking the opposite of the corresponding integer.
# \item \code{inverted duplication} - duplicates genomic regions and flips their orientation.
# \item \code{translocation} - translocates a stretch of genomic regions.
# }
#
# The processes can be "activated" by specifying their parameters as arguments to the \code{SimCopy} constructor.
# The processes are parametrised by a list with the following elements:
#
# \itemize{
# \item \code{rate} - the rate whereby the process proposes events.
# \item \code{mean} - the mean of the truncated Geometric+1 distribution determining the number of genomic regions affected by individual
# events generated by the process.
# \item \code{max} - the maximum number of genomic regions affected by a single event generated by the process. The default is \code{mean * 10}.
# }
#
# The simulations are run by the \link{Simulate.SimCopy}, which returns a list with the following elements:
#
# \itemize{
# \item \code{cnh} - a data frame containing the simulated copy number profiles.
# \item \code{aln} - the simulated genomic region alignment as reported by \link{Simulate.PhyloSim}.
# Note that any element containing only dashes represents a single gap.
# \item \code{fasta} - a string containing the simulated alignment in a fasta-like format.
# Note that any element containing only dashes represents a single gap.
# \item \code{phylo} - the \code{phylo} object used for simulation. It might be in different order than the object specified as argument.
# \item \code{phylosim} - the \pkg{\link{PhyloSim}} object used for simulation.
# \item \code{processes} - the \pkg{\link{PhyloSim}} processes used during the simulation.
# }
#
# \code{SimCopy} objects can be recycled for simulations along different trees. See the \link{Simulate.SimCopy} method for an example.
#
# @classhierarchy
# }
#
# @synopsis
#
# \arguments{
# \item{root.size}{The number of regions in the root genome (100 by default).}
# \item{deletion}{A list containing the parameters of the deletion process.}
# \item{duplication}{A list containing the parameters of the duplication process.}
# \item{inv.duplication}{A list containing the parameters of the inverted duplication process.}
# \item{inversion}{A list containing the parameters of the inversion process.}
# \item{translocation}{A list containing the parameters of the translocation process.}
# \item{...}{Additional arguments.}
# }
#
# \section{Fields and Methods}{
# @allmethods
# }
#
# \examples{
# # The following tiny examples illustrate the
# # effects of individual processes:
#
# tree<-rcoal(2) # We will use this tiny tree in the examples below.
# rate<-0.08 # Common rate for the small examples.
#
# # Simulating deletions and dealing with the results:
# cat("\nSimulating deletions:\n")
# # Construct a SimCopy object:
# sc <- SimCopy(
# root.size=40,
# deletion=list(rate=rate, mean=2)
# )
# # Run simulation:
# res<-Simulate(sc, tree)
# # Deal with the simulation results:
# print(res$aln) # print out the simulated alignment
# print(res$cnh) # print out the simulated copy number history
# print(res$fasta)# print out the fasta alignment
# summary(res$phylosim) # get the details of the PhyloSim object used for simulations
# summary(res$processes[[1]]) # get the details of the deletion process
# plot(res$processes[[1]]) # plot the distribution of deletion lengths
#
# # Simulate duplications and print out the resulting alignment:
# cat("\nSimulating duplications:\n")
# # Construct a SimCopy object:
# sc <- SimCopy(
# root.size=20,
# duplication=list(rate=rate, mean=2)
# )
# print( Simulate(sc, tree)$aln )
#
# # Simulate inverted duplications and print out the resulting alignment:
# cat("\nSimulating inverted duplications:\n")
# # Construct a SimCopy object:
# sc <- SimCopy(
# root.size=20,
# inv.duplication=list(rate=rate, mean=2)
# )
# print( Simulate(sc, tree)$aln )
#
# # Simulate inversions and print out the resulting alignment:
# cat("\nSimulating inversions:\n")
# # Construct a SimCopy object:
# sc <- SimCopy(
# root.size=20,
# inversion=list(rate=rate, mean=2)
# )
# print( Simulate(sc, tree)$aln )
#
# # Simulate translocations and print out the resulting alignment:
# cat("\nSimulating translocations:\n")
# # Construct a SimCopy object:
# sc <- SimCopy(
# root.size=20,
# translocation=list(rate=rate, mean=2)
# )
# print( Simulate(sc, tree)$aln )
#
# ##
# ## In the following simulation we will use all the processes above
# ## and we will attempt to recover the topology using simple hierarchical
# ## clustering of the copy number profiles.
# ##
#
# tree<-rcoal(6)
# rate<-0.05
# sc <- SimCopy(
# root.size=50,
# deletion=list(rate=rate, mean=2),
# duplication=list(rate=rate, mean=2),
# inv.duplication=list(rate=rate, mean=2),
# inversion=list(rate=rate, mean=2),
# translocation=list(rate=rate, mean=2)
# )
# res<-Simulate(sc, tree, anc=FALSE) # discard internal nodes
# # Print out the simulate genomic region alignment through
# # the underlying PhyloSim object:
# plot(res$phylosim)
# # Calculate distances between copy number profiles:
# d<-dist(res$cnh)
# # Cluster the copy number profiles:
# hc<-hclust(d)
#
# # Relabel the tips of the true tree and plot it out:
# tree$tip.label<-1:length(tree$tip.label)
# plot(tree)
# # Plot out the results of hierarchical clustering:
# plot(hc)
#
# }
#
# @author
#
# \seealso{
# See the \link{Simulate.SimCopy} method for the details of running simulations.
# See also the \pkg{\link{phylosim}} and \pkg{\link{ape}} packages.
# }
#
#*/###########################################################################
setConstructorS3(
"SimCopy",
function(
root.size=100,
deletion=list(rate=NA, mean=NA, max=NA),
duplication=list(rate=NA, mean=NA, max=NA),
inv.duplication=list(rate=NA, mean=NA, max=NA),
inversion=list(rate=NA, mean=NA, max=NA),
translocation=list(rate=NA, mean=NA, max=NA),
...
){
this <- extend(SCRoot(), "SimCopy",
root.size=root.size,
deletion=deletion,
duplication=duplication,
inv.duplication=inv.duplication,
inversion=inversion,
translocation=translocation
);
this$.processes<-.construct.processes(this)
return(this)
},
enforceRCC=TRUE
);
# Function constructing processes:
.construct.processes<-function(this) {
# Construct processes:
processes<-list()
if(!is.na(this$deletion$rate)) {
del <-.construct.deletor(rate=this$deletion$rate, lenMean=this$deletion$mean, lenMax=this$deletion$max)
processes<-c(processes, list(del))
}
if(!is.na(this$duplication$rate)) {
dup <-.construct.duplicator(rate=this$duplication$rate, lenMean=this$duplication$mean, lenMax=this$duplication$max)
processes<-c(processes, list(dup))
}
if(!is.na(this$inv.duplication$rate)) {
inv.dup <-.construct.inv.duplicator(rate=this$inv.duplication$rate, lenMean=this$inv.duplication$mean, lenMax=this$inv.duplication$max)
processes<-c(processes, list(inv.dup))
}
if(!is.na(this$inversion$rate)) {
inv <-.construct.invertor(rate=this$inversion$rate, lenMean=this$inversion$mean, lenMax=this$inversion$max)
processes<-c(processes, list(inv))
}
if(!is.na(this$translocation$rate)) {
trl <-.construct.translocator(rate=this$translocation$rate, lenMean=this$translocation$mean, lenMax=this$translocation$max)
processes<-c(processes, list(trl))
}
return(processes)
}
# Set up a truncated geometric+1 distribution according to the
# specified mean and maximum:
.setup.ldist<-function(l.mean, l.max=NULL) {
if(is.na(l.mean) || l.mean < 1) {
stop("Illegal mean length: ", l.mean)
}
if(is.null(l.max)){
l.max <- l.mean * 10
}
sizes <- 0:(l.max-1)
probs <- dgeom(sizes, prob=1/l.mean)
probs <- probs/sum(probs)
sizes <- sizes + 1
return(
list(sizes=sizes, probs=probs)
)
}
###########################################################################/**
#
# @RdocMethod Simulate
#
# @title "Method for simulating copy number histories"
#
# \description{
# @get "title".
#
# This method takes a \link{SimCopy} object and a \code{phylo} object generated by the \pkg{\link{ape}}
# package and simulates the evolution of genomic regions using the \pkg{\link{PhyloSim}} package.
# }
#
# @synopsis
#
# \arguments{
# \item{this}{A \code{SimCopy} object.}
# \item{phylo}{A phylo object constructed by the \pkg{\link{ape}} package.}
# \item{anc}{Save copy number profiles corresponding to internal nodes (TRUE by default).}
# \item{quiet}{Suppress \pkg{\link{PhyloSim}} verbose output (FALSE by default).}
# \item{...}{Not used.}
# }
#
# \value{
# The return value is a list with the following elements:
# \itemize{
# \item \code{cnh} - a data frame containing the simulated copy number profiles.
# \item \code{aln} - the simulated genomic region alignment as reported by \link{Simulate.PhyloSim}.
# Note that any element containing only dashes represents a single gap.
# \item \code{fasta} - a string containing the simulated alignment in a fasta-like format.
# Note that any element containing only dashes represents a single gap.
# \item \code{phylo} - the \code{phylo} object used for simulation. It might be in different order than the object specified as argument.
# \item \code{phylosim} - the \pkg{\link{PhyloSim}} object used for simulation.
# \item \code{processes} - the \pkg{\link{PhyloSim}} processes used during the simulation.
# }
# }
#
# \examples{
#
# # The following example illustrates how to simulate copy number
# # evolution along many trees by the processes defined in a single
# # SimCopy object. See the class documentation for more detailed examples.
#
# # Construct a SimCopy object with a duplication process:
# sc <- SimCopy(
# root.size=5,
# duplication=list(rate=0.05, mean=1)
# )
#
# for(i in 1:4) {
# cat("\nReplicate: ", i, "\n\n")
# # Generate a coalescent tree:
# tree<-rcoal(4)
# # Run simulation and print out the copy number history:
# print( Simulate(sc, tree, anc=FALSE, quiet=TRUE)$cnh )
# }
#
# }
#
# @author
#
# \seealso{
# @seeclass
# }
#
#*/###########################################################################
setMethodS3(
"Simulate",
class="SimCopy",
function(
this,
phylo,
anc=TRUE,
quiet=FALSE,
...
){
if(missing(phylo)){
stop("Tree must be given as an APE phylo object!")
}
# Construct the root genome object:
tmp <- .construct.root(this$root.size)
root.seq <- tmp$seq
this$.alphabet <- tmp$alphabet
# Attach the processes to the root genome:
setProcesses(root.seq, list(this$.processes))
# Construct the Phylosim simulation object:
psim<-PhyloSim(root.seq=root.seq, phylo=phylo)
# Simulate copy number evolution:
Simulate(psim, quiet=quiet)
# Construct copy number history from the PhyloSim alignment:
cnh <- .getCnh(this, psim, anc)
phylo <-psim$phylo
fasta <-.buildFasta(this, psim, anc)
return(
list(
phylo= phylo,
aln = psim$alignment,
cnh = cnh,
fasta=fasta,
phylosim=psim,
processes=this$.processes
)
)
},
private=FALSE,
protected=FALSE,
overwrite=TRUE,
conflict="warning"
);
# Private method constructing fasta from the alignment matrix:
setMethodS3(
".buildFasta",
class="SimCopy",
function(
object,
this,
anc,
...
){
fasta <- ""
if(any(is.na(this$.alignment))){
warning("Alignment is undefined, nothing to save!\n");
return();
}
else {
if(anc){
for(i in 1:dim(this$.alignment)[[1]]){
fasta <- paste(fasta, ">",rownames(this$.alignment)[[i]],"\n",sep="");
fasta <- paste(fasta, paste(this$.alignment[i,],collapse="\t"),"\n", sep="");
}
} else {
for(i in 1:dim(this$.alignment)[[1]]){
name<-rownames(this$.alignment)[[i]];
if(!any((length(grep("^Node \\d+$",name,perl=TRUE,value=FALSE)) > 0),(length(grep("^Root node \\d+$",name,perl=TRUE,value=FALSE)) > 0))){
fasta<-paste(fasta, ">",name,"\n", sep="");
fasta<-paste(fasta, paste(this$.alignment[i,],collapse="\t"),"\n", sep="");
}
}
}
}
return(fasta);
},
private=TRUE,
protected=FALSE,
overwrite=FALSE,
conflict="warning",
validators=getOption("R.methodsS3:validators:setMethodS3")
);
# Private method for constructing the copy number history
# from the SimCopy alignment.
setMethodS3(
".getCnh",
class="SimCopy",
function(
this,
sim,
anc=FALSE,
...
){
sym <- 1:this$root.size
nodes <- getNodes(sim)
node.names <- c()
cnh <- data.frame()
for (n in nodes) {
if(!anc && !is.tip(sim, n)){
next
}
s<- abs(as.numeric(getSeqFromNode(sim, n)$states))
cnh<-rbind(cnh, tabulate(s, this$root.size))
node.names<-c(node.names, n)
}
row.names(cnh) <- node.names
colnames(cnh) <- 1:this$root.size
return(cnh)
},
private=TRUE,
protected=FALSE,
overwrite=TRUE,
conflict="warning"
);
## Method: summary.SimCopy
##
###########################################################################/**
#
# @RdocMethod summary
#
# @title "Summarize the properties of an object"
#
# \description{
# @get "title".
# }
#
# @synopsis
#
# \arguments{
# \item{object}{A SimCopy object}
# \item{...}{Not used.}
# }
#
# \value{
# Returns a SCRoot.Summary object.
# }
#
# \examples{
# # Create a SimCopy object with a deletion process defined:
# sim<-SimCopy(
# root.size=10,
# deletion=list(rate=0.5, mean=20, max=20)
# );
# # get a summary
# summary(sim)
# }
#
# @author
#
# \seealso{
# @seeclass
# }
#
#*/###########################################################################
setMethodS3(
"summary",
class="SimCopy",
function(
object,
...
){
this<-object;
this$.summary$"Root genome length" <-this$root.size;
this$.summary$"Deletion process" <-.build.process.summary(this$deletion);
this$.summary$"Duplication process" <-.build.process.summary(this$duplication);
this$.summary$"Inverted duplication process" <-.build.process.summary(this$inv.duplication);
this$.summary$"Inversion process" <-.build.process.summary(this$inversion);
this$.summary$"Translocation process" <-.build.process.summary(this$translocation);
NextMethod();
},
private=FALSE,
protected=FALSE,
overwrite=FALSE,
conflict="warning",
validators=getOption("R.methodsS3:validators:setMethodS3")
);
.build.process.summary<-function(l){
if(is.na(l$rate)){
return(NA)
}
if(l$rate == 0){
return(NA)
}
t<-paste(
"\n\tRate:\t\t", l$rate, "\n",
"\tMean length:\t", l$mean, "\n",
"\tMaximum length:\t", l$max,
sep="")
return(t)
}