This repository has been archived by the owner on Apr 30, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathexpr_test.go
405 lines (350 loc) · 11.3 KB
/
expr_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package eval
import (
"math/big"
"testing"
)
var undefined = "undefined"
var typeAsExpr = "type .* used as expression"
var badRuneLit = "rune literal"
var unknownEscape = "unknown escape sequence"
var opTypes = "illegal (operand|argument) type|cannot index into"
var badAddrOf = "cannot take the address"
var constantTruncated = "constant [^ ]* truncated"
var constantUnderflows = "constant [^ ]* underflows"
var constantOverflows = "constant [^ ]* overflows"
var implLimit = "implementation limit"
var mustBeUnsigned = "must be unsigned"
var divByZero = "divide by zero"
var hugeInteger = new(big.Int).Lsh(idealOne, 64)
var exprTests = []test{
Val("i", 1),
CErr("zzz", undefined),
// TODO(austin) Test variable in constant context
//CErr("t", typeAsExpr),
Val("'a'", big.NewInt('a')),
Val("'\\uffff'", big.NewInt('\uffff')),
Val("'\\n'", big.NewInt('\n')),
CErr("''+x", badRuneLit),
// Produces two parse errors
//CErr("'''", ""),
CErr("'\n'", badRuneLit),
CErr("'\\z'", unknownEscape),
CErr("'ab'", badRuneLit),
Val("1.0", big.NewRat(1, 1)),
//Val("1.", big.NewRat(1, 1)), //FIXME
Val(".1", big.NewRat(1, 10)),
//Val("1e2", big.NewRat(100, 1)),
//Val("1E2", big.NewRat(100, 1)), //FIXME
Val("100.0", big.NewRat(100, 1)),
Val("\"abc\"", "abc"),
Val("\"\"", ""),
Val("\"\\n\\\"\"", "\n\""),
CErr("\"\\z\"", unknownEscape),
CErr("\"abc", "string literal not terminated"),
Val("(i)", 1),
Val("ai[0]", 1),
Val("(&ai)[0]", 1),
Val("ai[1]", 2),
Val("ai[i]", 2),
Val("ai[u]", 2),
CErr("ai[f]", opTypes),
CErr("ai[0][0]", opTypes),
CErr("ai[2]", "index 2 exceeds"),
CErr("ai[1+1]", "index 2 exceeds"),
CErr("ai[-1]", "negative index"),
RErr("ai[i+i]", "index 2 exceeds"),
RErr("ai[-i]", "negative index"),
CErr("i[0]", opTypes),
CErr("f[0]", opTypes),
Val("aai[0][0]", 1),
Val("aai[1][1]", 4),
CErr("aai[2][0]", "index 2 exceeds"),
CErr("aai[0][2]", "index 2 exceeds"),
Val("sli[0]", 1),
Val("sli[1]", 2),
CErr("sli[-1]", "negative index"),
RErr("sli[-i]", "negative index"),
RErr("sli[2]", "index 2 exceeds"),
Val("s[0]", uint8('a')),
Val("s[1]", uint8('b')),
CErr("s[-1]", "negative index"),
RErr("s[-i]", "negative index"),
RErr("s[3]", "index 3 exceeds"),
Val("ai[0:2]", vslice{varray{1, 2}, 2, 2}),
Val("ai[0:1]", vslice{varray{1, 2}, 1, 2}),
Val("ai[0:]", vslice{varray{1, 2}, 2, 2}),
Val("ai[i:]", vslice{varray{2}, 1, 1}),
Val("ai[:2]", vslice{varray{1, 2}, 2, 2}),
Val("ai[:]", vslice{varray{1, 2}, 2, 2}),
Val("sli[0:2]", vslice{varray{1, 2, 3}, 2, 3}),
Val("sli[0:i]", vslice{varray{1, 2, 3}, 1, 3}),
Val("sli[1:]", vslice{varray{2, 3}, 1, 2}),
Val("sli[:2]", vslice{varray{1, 2, 3}, 2, 3}),
Val("sli[:]", vslice{varray{1, 2, 3}, 2, 3}),
CErr("1(2)", "cannot call"),
CErr("fn(1,2)", "too many"),
CErr("fn()", "not enough"),
CErr("fn(true)", opTypes),
CErr("fn(true)", "function call"),
// Single argument functions don't say which argument.
//CErr("fn(true)", "argument 1"),
Val("fn(1)", 2),
Val("fn(1.0)", 2),
CErr("fn(1.5)", constantTruncated),
Val("fn(i)", 2),
CErr("fn(u)", opTypes),
CErr("void()+2", opTypes),
CErr("oneTwo()+2", opTypes),
Val("append(sli, 3)", vslice{varray{1, 2, 3}, 3, 3}),
Val("append(sli, 3, 4)", vslice{varray{1, 2, 3, 4}, 4, 4}),
//FIXME: implement ellipsis unpacking
//Val("append(sli, []int{3,4}...)", vslice{varray{1, 2, 3, 4}, 4, 4}),
Val("append(sli, 3.0)", vslice{varray{1, 2, 3}, 3, 3}),
CErr("append(sli, 3.1)", "cannot convert argument 1 [(]type ideal float[)] to type int in 'append'"),
CErr("append(sli, \"2\")", "cannot use string literal [(]type <string>[)] as type int in 'append'"),
Val("cap(ai)", 2),
Val("cap(&ai)", 2),
Val("cap(aai)", 2),
Val("cap(sli)", 3),
CErr("cap(0)", opTypes),
CErr("cap(i)", opTypes),
CErr("cap(s)", opTypes),
Val("copy([]int{}, sli)", 0),
Val("copy([]int{0,0,0}, sli)", 2),
Val2("x := []int{0,0,0}; _ := copy(x, sli)",
"x[0] == sli[0]", true, "x[1]==sli[1]", true),
Val2("x := []int{0,0,99}; _ := copy(x, sli)",
"x[0] == sli[0]", true, "x[2]==99", true),
Val2("x := []int{90,91,92}; _ := copy(x[1:], sli)",
"x[0] == 90", true, "x[1]==sli[0]", true),
Val2("x := []int{90,91,92}; _ := copy(x[1:], sli)",
"x[2] == sli[1]", true, "x[1]==sli[0]", true),
Val("len(s)", 3),
Val("len(ai)", 2),
Val("len(&ai)", 2),
Val("len(ai[0:])", 2),
Val("len(ai[1:])", 1),
Val("len(ai[2:])", 0),
Val("len(aai)", 2),
Val("len(sli)", 2),
Val("len(sli[0:])", 2),
Val("len(sli[1:])", 1),
Val("len(sli[2:])", 0),
Val("len(map[int]int{})", 0),
Val("len(map[int]int{1:1,2:2})", 2),
Val("len(ami)", 2),
CErr("len(0)", opTypes),
CErr("len(i)", opTypes),
CErr("*i", opTypes),
Val("*&i", 1),
Val("*&(i)", 1),
CErr("&1", badAddrOf),
CErr("&c", badAddrOf),
Val("*(&ai[0])", 1),
Val("+1", big.NewInt(+1)),
Val("+1.0", big.NewRat(1, 1)),
Val("01.5", big.NewRat(15, 10)),
CErr("+\"x\"", opTypes),
Val("-42", big.NewInt(-42)),
Val("-i", -1),
Val("-f", -1.0),
// 6g bug?
//Val("-(f-1)", -0.0),
CErr("-\"x\"", opTypes),
// TODO(austin) Test unary !
Val("^2", big.NewInt(^2)),
Val("^(-2)", big.NewInt(^(-2))),
CErr("^2.0", opTypes),
CErr("^2.5", opTypes),
Val("^i", ^1),
Val("^u", ^uint(1)),
CErr("^f", opTypes),
Val("1+i", 2),
Val("1+u", uint(2)),
Val("3.0+i", 4),
Val("1+1", big.NewInt(2)),
Val("f+f", 2.0),
Val("1+f", 2.0),
Val("1.0+1", big.NewRat(2, 1)),
Val("\"abc\" + \"def\"", "abcdef"),
CErr("i+u", opTypes),
CErr("-1+u", constantUnderflows),
// TODO(austin) Test named types
Val("2-1", big.NewInt(1)),
Val("2.0-1", big.NewRat(1, 1)),
Val("f-2", -1.0),
Val("-0.0", big.NewRat(0, 1)),
Val("2*2", big.NewInt(4)),
Val("2*i", 2),
Val("3/2", big.NewInt(1)),
Val("3/i", 3),
CErr("1/0", divByZero),
CErr("1.0/0", divByZero),
RErr("i/0", divByZero),
Val("3%2", big.NewInt(1)),
Val("i%2", 1),
CErr("3%0", divByZero),
CErr("3.0%0", opTypes),
RErr("i%0", divByZero),
// Examples from "Arithmetic operators"
Val("5/3", big.NewInt(1)),
Val("(i+4)/(i+2)", 1),
Val("5%3", big.NewInt(2)),
Val("(i+4)%(i+2)", 2),
Val("-5/3", big.NewInt(-1)),
Val("(i-6)/(i+2)", -1),
Val("-5%3", big.NewInt(-2)),
Val("(i-6)%(i+2)", -2),
Val("5/-3", big.NewInt(-1)),
Val("(i+4)/(i-4)", -1),
Val("5%-3", big.NewInt(2)),
Val("(i+4)%(i-4)", 2),
Val("-5/-3", big.NewInt(1)),
Val("(i-6)/(i-4)", 1),
Val("-5%-3", big.NewInt(-2)),
Val("(i-6)%(i-4)", -2),
// Examples from "Arithmetic operators"
Val("11/4", big.NewInt(2)),
Val("(i+10)/4", 2),
Val("11%4", big.NewInt(3)),
Val("(i+10)%4", 3),
Val("11>>2", big.NewInt(2)),
Val("(i+10)>>2", 2),
Val("11&3", big.NewInt(3)),
Val("(i+10)&3", 3),
Val("-11/4", big.NewInt(-2)),
Val("(i-12)/4", -2),
Val("-11%4", big.NewInt(-3)),
Val("(i-12)%4", -3),
Val("-11>>2", big.NewInt(-3)),
Val("(i-12)>>2", -3),
Val("-11&3", big.NewInt(1)),
Val("(i-12)&3", 1),
// TODO(austin) Test bit ops
// For shift, we try nearly every combination of positive
// ideal int, negative ideal int, big ideal int, ideal
// fractional float, ideal non-fractional float, int, uint,
// and float.
Val("2<<2", big.NewInt(2<<2)),
CErr("2<<(-1)", constantUnderflows),
CErr("2<<0x10000000000000000", constantOverflows),
CErr("2<<2.5", constantTruncated),
Val("2<<2.0", big.NewInt(2<<2.0)),
CErr("2<<i", mustBeUnsigned),
Val("2<<u", 2<<1),
CErr("2<<f", opTypes),
Val("-2<<2", big.NewInt(-2<<2)),
CErr("-2<<(-1)", constantUnderflows),
CErr("-2<<0x10000000000000000", constantOverflows),
CErr("-2<<2.5", constantTruncated),
Val("-2<<2.0", big.NewInt(-2<<2.0)),
CErr("-2<<i", mustBeUnsigned),
Val("-2<<u", -2<<1),
CErr("-2<<f", opTypes),
Val("0x10000000000000000<<2", new(big.Int).Lsh(hugeInteger, 2)),
CErr("0x10000000000000000<<(-1)", constantUnderflows),
CErr("0x10000000000000000<<0x10000000000000000", constantOverflows),
CErr("0x10000000000000000<<2.5", constantTruncated),
Val("0x10000000000000000<<2.0", new(big.Int).Lsh(hugeInteger, 2)),
CErr("0x10000000000000000<<i", mustBeUnsigned),
CErr("0x10000000000000000<<u", constantOverflows),
CErr("0x10000000000000000<<f", opTypes),
CErr("2.5<<2", opTypes),
CErr("2.0<<2", opTypes),
Val("i<<2", 1<<2),
CErr("i<<(-1)", constantUnderflows),
CErr("i<<0x10000000000000000", constantOverflows),
CErr("i<<2.5", constantTruncated),
Val("i<<2.0", 1<<2),
CErr("i<<i", mustBeUnsigned),
Val("i<<u", 1<<1),
CErr("i<<f", opTypes),
Val("i<<u", 1<<1),
Val("u<<2", uint(1<<2)),
CErr("u<<(-1)", constantUnderflows),
CErr("u<<0x10000000000000000", constantOverflows),
CErr("u<<2.5", constantTruncated),
Val("u<<2.0", uint(1<<2)),
CErr("u<<i", mustBeUnsigned),
Val("u<<u", uint(1<<1)),
CErr("u<<f", opTypes),
Val("u<<u", uint(1<<1)),
CErr("f<<2", opTypes),
// <, <=, >, >=
Val("1<2", 1 < 2),
Val("1<=2", 1 <= 2),
Val("2<=2", 2 <= 2),
Val("1>2", 1 > 2),
Val("1>=2", 1 >= 2),
Val("2>=2", 2 >= 2),
Val("i<2", 1 < 2),
Val("i<=2", 1 <= 2),
Val("i+1<=2", 2 <= 2),
Val("i>2", 1 > 2),
Val("i>=2", 1 >= 2),
Val("i+1>=2", 2 >= 2),
Val("u<2", 1 < 2),
Val("f<2", 1 < 2),
Val("s<\"b\"", true),
Val("s<\"a\"", false),
Val("s<=\"abc\"", true),
Val("s>\"aa\"", true),
Val("s>\"ac\"", false),
Val("s>=\"abc\"", true),
CErr("i<u", opTypes),
CErr("i<f", opTypes),
CErr("i<s", opTypes),
CErr("&i<&i", opTypes),
CErr("ai<ai", opTypes),
// ==, !=
Val("1==1", true),
Val("1!=1", false),
Val("1==2", false),
Val("1!=2", true),
Val("1.0==1", true),
Val("1.5==1", false),
Val("i==1", true),
Val("i!=1", false),
Val("i==2", false),
Val("i!=2", true),
Val("u==1", true),
Val("f==1", true),
Val("s==\"abc\"", true),
Val("s!=\"abc\"", false),
Val("s==\"abcd\"", false),
Val("s!=\"abcd\"", true),
Val("&i==&i", true),
Val("&i==&i2", false),
Val("fn==fn", true),
Val("fn==func(int)int{return 0}", false),
CErr("i==u", opTypes),
CErr("i==f", opTypes),
CErr("&i==&f", opTypes),
CErr("ai==ai", opTypes),
CErr("t==t", opTypes),
CErr("fn==oneTwo", opTypes),
// composite literals
Val2("x := [2]int{11,22}", "len(x)", 2, "cap(x)", 2),
Val2("x := [2]int{11,22}", "x[0]", 11, "x[1]", 22),
Val2("x := [...]int{11,22}", "len(x)", 2, "cap(x)", 2),
Val2("x := [...]int{11,22}", "x[0]", 11, "x[1]", 22),
Val2("x := []int{11,22}", "len(x)", 2, "cap(x)", 2),
Val2("x := []int{11,22}", "x[0]", 11, "x[1]", 22),
Val1("x := map[int] int{1:42}; i = x[1]", "i", 42),
Val1(`x := map[string] int{"1":42}; i = x["1"]`, "i", 42),
Val1(`x := map[int] string{1:"42"}`, "x[1]", "42"),
Val1("x := map[int] int{1:42}; i = len(x)", "i", 1),
Val1("x := map[int] int{}; i = len(x)", "i", 0),
Val2("x := map[int] int{1:42}; i, y := x[1]", "i", 42, "y", true),
Val2("x := map[int] int{1:42}; i, y := x[2]", "i", 0, "y", false),
RErr("x := map[int] int{}; i = x[1]", "key '1' not found"),
Val1("type S struct {i int; j float64; k float64}; ss := S{1,2.1,3.1}", "ss", vstruct{1, 2.1, 3.1}),
Val1("type S struct {i int; j float64; k float64}; ss := S{i:1,j:2.1,k:3.1}", "ss", vstruct{1, 2.1, 3.1}),
Val1("type S struct {i int; j float64; k float64}; ss := S{j:2.1,i:1,k:3.1}", "ss", vstruct{1, 2.1, 3.1}),
Val1("type S struct {i int; j float64; k float64}; ss := S{j:2.1,k:3.1,i:1}", "ss", vstruct{1, 2.1, 3.1}),
CErr(`type S struct {i int; j float64; k float64}; ss := S{i:1.1,j:2.1,k:3.1}`, "cannot convert literal #1 [(]type ideal float[)] to type int"),
}
func TestExpr(t *testing.T) { runTests(t, "exprTests", exprTests) }