-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_14000-JournalWatchPBPath.Rmd
161 lines (111 loc) · 4.04 KB
/
_14000-JournalWatchPBPath.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# PBPath Journal Watch
## Recent Articles from PubMed
### Analysis of Recent Pancreas Related Articles
Pancreas Journals
https://www.ncbi.nlm.nih.gov/nlmcatalog/?term=pancreas
Pathology Journals
Member List
DOI Link
PubMed Link
Journal Link
Altmetric API
Dimensions API
USCAP abstracts vs publication
Member list vs worldmap
```
{r , eval=FALSE, include=FALSE, echo=TRUE}
# load required packages
library(tidyverse)
library(knitr)
library(rstudioapi)
```
```
{r eval=FALSE, include=FALSE, echo=TRUE}
knitr::opts_chunk$set(
eval = FALSE,
message = FALSE,
warning = FALSE,
include = FALSE,
tidy = TRUE
)
```
```
{r eval=FALSE, include=FALSE, echo=TRUE}
myTerm <- rstudioapi::terminalCreate(show = FALSE)
rstudioapi::terminalSend(myTerm, esearch -db pubmed -query 'pancreas[Title/Abstract]) AND pathology' -datetype EDAT -min 2018/05/01 -max 3000 | \
efetch -format xml | \
xtract -pattern PubmedArticle -element MedlineCitation/PMID \
-block ArticleId -if ArticleId@IdType -equals doi -element ArticleId &> myquery.txt )
Sys.sleep(1)
repeat{
Sys.sleep(0.1)
if(rstudioapi::terminalBusy(myTerm) == FALSE){
print( Code Executed )
break
}
}
```
```
{r eval=FALSE, include=FALSE, echo=TRUE}
readLines( myquery.txt )
```
Pathology Journal ISSN List was retrieved from [In Cites Clarivate](https://jcr.incites.thomsonreuters.com/), and Journal Data Filtered as follows: `JCR Year: 2016 Selected Editions: SCIE,SSCI Selected Categories: 'PATHOLOGY' Selected Category Scheme: WoS`
```
{r Get ISSN List from data downloaded from WoS 1, eval=FALSE, include=FALSE, echo=TRUE}
# Get ISSN List from data downloaded from WoS
ISSNList <- JournalHomeGrid <- read_csv( data/JournalHomeGrid.csv ,
skip = 1) %>%
select(ISSN) %>%
filter(!is.na(ISSN)) %>%
t() %>%
paste( OR , collapse = ) # add OR between ISSN List
ISSNList <- gsub( OR $ , ,ISSNList) # to remove last OR
```
Data is retrieved from PubMed via E-direct.
PubMed collection from National Library of Medicine (https://www.ncbi.nlm.nih.gov/pubmed/), has the most comprehensive information about peer reviewed articles in medicine.
The API (https://dataguide.nlm.nih.gov/) is available for getting and fetching data from the server.
The query for PubMed is generated as ISSN List AND keywords like done in [advanced search of PubMed](https://www.ncbi.nlm.nih.gov/pubmed/advanced).
```
{r Generate Search Formula For Pathology Journals AND Countries 1, eval=FALSE, include=FALSE, echo=TRUE}
# Generate Search Formula For Pathology Journals AND Countries
searchformulaTR <- paste( ' ,ISSNList, ' , AND , Turkey[Affiliation] )
searchformulaDE <- paste( ' ,ISSNList, ' , AND , Germany[Affiliation] )
searchformulaJP <- paste( ' ,ISSNList, ' , AND , Japan[Affiliation] )
```
From the fetched data articles are grouped by country and keywords.
```
{r Articles per countries per year 1, eval=FALSE, include=FALSE, echo=TRUE}
# Articles per countries per year
tableTR <- table(YearPubmed(fetchTurkey)) %>%
as_tibble() %>%
rename(Turkey = n, Year = Var1)
tableDE <- table(YearPubmed(fetchGermany)) %>%
as_tibble() %>%
rename(Germany = n, Year = Var1)
tableJP <- table(YearPubmed(fetchJapan)) %>%
as_tibble() %>%
rename(Japan = n, Year = Var1)
# Join Tables
articles_per_year_table <- list(
tableTR,
tableDE,
tableJP
) %>%
reduce(left_join, by = Year , .id = id )
```
```
{r Prepare table for output 1, eval=FALSE, include=FALSE, echo=TRUE}
# Prepare table for output
articles_per_year <- articles_per_year_table %>%
gather(Country, n, 2:4)
articles_per_year$Country <- factor(articles_per_year$Country,
levels =c( Japan , Germany , Turkey ))
```
**Result:**
```
{r Print the Table of Articles per year per country 1, eval=FALSE, include=FALSE, echo=TRUE}
# Print the Table of Articles per year, per country
knitr::kable(articles_per_year_table, caption = Table of Articles per year, per country )
```
mapgraph
And the figure below shows this data in a line graph.