-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassifying images.py
34 lines (23 loc) · 1008 Bytes
/
Classifying images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
data = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = data.load_data()
class_names = ["T-shirt", "Pants", "Hoodie", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Boot"]
# keep inputs between 0 and 1
train_images = train_images/255.0
test_images = test_images/255.0
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation="relu"),
keras.layers.Dense(10, activation="softmax")
])
model.compile(omptmizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
model.fit(train_images, train_labels, epochs=5)
prediction = model.predict(test_images)
for i in range(5):
plt.grid(False)
plt.imshow(test_images[i], cmap=plt.cm.binary)
plt.xlabel("Actual: " + class_names[test_labels[i]])
plt.title("Prediction: " + class_names[np.argmax(prediction[i])])