-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain_infill_prior.py
332 lines (259 loc) · 16.9 KB
/
train_infill_prior.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import argparse
import torch
from torch.utils import data
from tqdm import tqdm
from tensorboardX import SummaryWriter
import smplx
import torch.optim as optim
import itertools
import random
from loader.train_loader_infill import TrainLoader
from models.AE import AE
from utils.utils import *
parser = argparse.ArgumentParser()
parser.add_argument('--gpu_id', type=int, default='0')
parser.add_argument('--save_dir', type=str, default='runs_try', help='path to save train logs and models')
parser.add_argument('--batch_size', type=int, default=60, help='input batch size')
parser.add_argument('--num_workers', type=int, default=2, help='# of dataloadeer num_workers')
parser.add_argument('--lr', type=float, default=0.0001, help='learning rate')
parser.add_argument('--num_epoch', type=int, default=100000, help='# of training epochs ')
parser.add_argument("--log_step", default=500, type=int, help='log after n iters')
parser.add_argument("--save_step", default=1000, type=int, help='save models after n iters')
# path to amass and smplx body model
parser.add_argument('--amass_dir', type=str, default='/local/home/szhang/AMASS/amass', help='path to AMASS dataset')
parser.add_argument('--body_model_path', type=str, default='/mnt/hdd/PROX/body_models', help='path to smplx body models')
# settings for body representation
parser.add_argument("--clip_seconds", default=4, type=int, help='length (seconds) of each motion sequence')
parser.add_argument('--body_mode', type=str, default='local_markers_4chan',
choices=['local_markers', 'local_markers_4chan'], help='which body representation to use')
parser.add_argument("--conv_k", default=3, type=int)
parser.add_argument('--with_hand', default='False', type=lambda x: x.lower() in ['true', '1'], help='include hand or not')
parser.add_argument('--normalize', default='True', type=lambda x: x.lower() in ['true', '1'], help='normalize input motion representation or not')
parser.add_argument('--input_padding', default='True', type=lambda x: x.lower() in ['true', '1'], help='pad input motion representation or not')
# settings for network
parser.add_argument('--downsample', default='True', type=lambda x: x.lower() in ['true', '1'], help='downsample latent space or not')
# loss weights
parser.add_argument("--weight_loss_rec_body", default=10.0, type=float, help='weight for input reconstruction loss')
parser.add_argument("--weight_loss_rec_body_v", default=10.0, type=float, help='weight for input 1st-order reconstruction loss')
parser.add_argument("--weight_loss_rec_contact_lbl", default=1.0, type=float, help='weight for foot contact prediction loss')
args = parser.parse_args()
torch.cuda.set_device(args.gpu_id)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print('gpu id:', torch.cuda.current_device())
def train(writer, logger):
# amass_dir = '/local/home/szhang/AMASS/amass'
# body_model_path = '/mnt/hdd/PROX/body_models'
smplx_model_path = os.path.join(args.body_model_path, 'smplx_model')
amass_train_datasets = ['HumanEva', 'MPI_HDM05', 'MPI_mosh', 'Transitions_mocap',
'ACCAD', 'BMLhandball', 'BMLmovi', 'BioMotionLab_NTroje', 'CMU',
'DFaust_67', 'Eyes_Japan_Dataset', 'MPI_Limits']
amass_test_datasets = ['TCD_handMocap', 'TotalCapture', 'SFU']
# amass_train_datasets = ['HumanEva', 'BMLmovi']
# amass_test_datasets = ['TCD_handMocap', 'TotalCapture']
preprocess_stats_dir = 'preprocess_stats'
if not os.path.exists(preprocess_stats_dir):
os.makedirs(preprocess_stats_dir)
################################### set dataloaders ######################################
print('[INFO] reading training data from datasets {}...'.format(amass_train_datasets))
train_dataset = TrainLoader(clip_seconds=args.clip_seconds, clip_fps=30, normalize=args.normalize,
split='train', mode=args.body_mode)
train_dataset.read_data(amass_train_datasets, args.amass_dir)
train_dataset.create_body_repr(with_hand=args.with_hand,
smplx_model_path=smplx_model_path)
train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, drop_last=True)
print('[INFO] reading test data from datasets {}...'.format(amass_test_datasets))
test_dataset = TrainLoader(clip_seconds=args.clip_seconds, clip_fps=30, normalize=args.normalize,
split='test', mode=args.body_mode)
test_dataset.read_data(amass_test_datasets, args.amass_dir)
test_dataset.create_body_repr(with_hand=args.with_hand,
smplx_model_path=smplx_model_path)
test_dataloader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers, drop_last=True)
################################## set train configs ######################################
if args.body_mode in ['local_markers']:
in_channel = 1
elif args.body_mode in ['local_markers_4chan']:
in_channel = 4
model = AE(downsample=args.downsample, in_channel=in_channel, kernel=args.conv_k).to(device)
optimizer = optim.Adam(filter(lambda p: p.requires_grad,
itertools.chain(model.parameters())),
lr=args.lr)
bce_loss = nn.BCEWithLogitsLoss().to(device)
################################# load prox masks ########################################
prox_mask_dir_list = os.listdir('mask_markers') # ['MPH11_00034_01', 'MPH11_00150_01', ...]
prox_mask_list = []
for dir in tqdm(prox_mask_dir_list):
mask = np.load('mask_markers/{}/mask_markers.npy'.format(dir)) # 0: markers to mask out
n_clip = len(mask) // 120
for i in range(n_clip):
mask_clip = mask[(i*120):((i+1)*120)] # [T, 67]
all_markers_n = mask_clip.shape[0] * mask_clip.shape[1]
mask_markers_n = all_markers_n - mask_clip.sum()
mask_ratio = mask_markers_n / all_markers_n
if mask_ratio >= 0.05: # ignore clips with few masks
cur_mask_clip = np.repeat(mask_clip, 3, axis=1) # [T, 67*3]
prox_mask_list.append(cur_mask_clip) # [n_seq, T, 67*3]
prox_mask_list = np.asarray(prox_mask_list)
print('[INFO] prox masks loaded, get {} prox mask clips in total.'.format(len(prox_mask_list)))
################################## start training #########################################
total_steps = 0
for epoch in range(args.num_epoch):
for step, data in tqdm(enumerate(train_dataloader)):
model.train()
total_steps += 1
[clip_img] = [item.to(device) for item in data] # clip_img: # [bs, 1/4, 1, T]
optimizer.zero_grad()
###### mask input
clip_img_input = clip_img.clone() # [bs, 1/4, d, T]
bs = clip_img.shape[0]
d = clip_img.shape[-2]
T = clip_img.shape[-1]
if epoch <= 20:
mask_marker_n = random.randint(1, 6)
mask_marker_id = torch.rand(bs, mask_marker_n) * 67 # all 67 markers
mask_marker_id = mask_marker_id.long() # [bs, mask_marker_n]
mask_row_id1 = mask_marker_id * 3
if args.body_mode in ['local_markers']: # for global traj and pelvis joint
mask_row_id1 = mask_row_id1 + 3 + 3
if args.body_mode in ['local_markers_4chan']: # for pelvis joint
mask_row_id1 = mask_row_id1 + 3
mask_row_id2 = mask_row_id1 + 1
mask_row_id3 = mask_row_id2 + 1
for i in range(bs):
clip_img_input[i, 0, mask_row_id1[i], :] = 0.
clip_img_input[i, 0, mask_row_id2[i], :] = 0.
clip_img_input[i, 0, mask_row_id3[i], :] = 0.
# mask contact lbls/distance if foot marker is masked
if 16 in mask_marker_id[i] or 30 in mask_marker_id[i]:
clip_img_input[i, 0, -4, :] = 0.
clip_img_input[i, 0, -2, :] = 0.
if 47 in mask_marker_id[i] or 60 in mask_marker_id[i]:
clip_img_input[i, 0, -3, :] = 0.
clip_img_input[i, 0, -1, :] = 0.
else:
# load prox masks, prox_mask_list: [n_seq, T=120, 25*3]
np.random.shuffle(prox_mask_list) # shuffle along n_seq axis
mask = torch.from_numpy(prox_mask_list[0:bs]).float().permute(0, 2, 1).unsqueeze(1).to(device) # [bs, 1, 67*3, 120]
# mask contact lbls if foot marker is masked
# is_mask_left: 1: keep left foot, 0: mask left foot
is_mask_left = (mask[:, :, (16 * 3):(16 * 3 + 1), :] == 1) * (mask[:, :, (30 * 3):(30 * 3 + 1), :] == 1) # [bs, 1, 1, 120]
is_mask_right = (mask[:, :, (47 * 3):(47 * 3 + 1), :] == 1) * (mask[:, :, (60 * 3):(60 * 3 + 1), :] == 1)
append_contact_mask = torch.cat([is_mask_left, is_mask_right, is_mask_left, is_mask_right], dim=-2) # [bs, 1, 4, 120]
append_contact_mask = append_contact_mask.float()
if args.body_mode in ['local_markers']:
append_mask = torch.ones([bs, 1, 3+3, T]).to(device) # for global traj and pelvis joint
if args.body_mode in ['local_markers_4chan']:
append_mask = torch.ones([bs, 1, 3, T]).to(device) # for pelvis joint
mask = torch.cat([append_mask, mask[:, :, :, 0:T], append_contact_mask[:, :, :, 0:T]], dim=-2) # [bs, 1, 208/211, T]
clip_img_input[:, 0:1] = clip_img_input[:, 0:1] * mask # [bs, 1/4, d, T]
if args.input_padding:
p2d = (8, 8, 1, 1)
clip_img_input = F.pad(clip_img_input, p2d, 'reflect') # masked
clip_img = F.pad(clip_img, p2d, 'reflect')
# forward
clip_img_rec, z = model(clip_img_input) # z: [bs, 256, d, T], clip_img_rec: [bs, 1, d, T]
# loss
clip_img_v = clip_img[:, :, :, 1:] - clip_img[:, :, :, 0:-1]
clip_img_rec_v = clip_img_rec[:, :, :, 1:] - clip_img_rec[:, :, :, 0:-1]
loss_rec_body = F.l1_loss(clip_img[:, 0, 0:-5], clip_img_rec[:, 0, 0:-5]) # with 1 row of pad
loss_rec_body_v = F.l1_loss(clip_img_v[:, 0, 0:-5], clip_img_rec_v[:, 0, 0:-5])
loss_rec_contact_lbl = bce_loss(clip_img_rec[:, 0, -5:], clip_img[:, 0, -5:])
loss = args.weight_loss_rec_body * loss_rec_body + args.weight_loss_rec_body_v * loss_rec_body_v + \
args.weight_loss_rec_contact_lbl * loss_rec_contact_lbl
loss.backward()
optimizer.step()
####################### log train loss ############################
if total_steps % args.log_step == 0:
writer.add_scalar('train/loss_rec_body', loss_rec_body.item(), total_steps)
print_str = 'Step {:d}/ Epoch {:d}] loss_rec_body: {:.10f}'. \
format(step, epoch, loss_rec_body.item())
logger.info(print_str)
print(print_str)
writer.add_scalar('train/loss_rec_body_v', loss_rec_body_v.item(), total_steps)
print_str = 'Step {:d}/ Epoch {:d}] loss_rec_v: {:.10f}'. \
format(step, epoch, loss_rec_body_v.item())
logger.info(print_str)
print(print_str)
writer.add_scalar('train/loss_rec_contact_lbl', loss_rec_contact_lbl.item(), total_steps)
print_str = 'Step {:d}/ Epoch {:d}] loss_rec_contact_lbl: {:.10f}'. \
format(step, epoch, loss_rec_contact_lbl.item())
logger.info(print_str)
print(print_str)
################## test loss #################################
if total_steps % args.log_step == 0:
loss_rec_body_test, loss_rec_body_v_test = 0, 0
loss_rec_contact_lbl_test = 0
with torch.no_grad():
for test_step, data in tqdm(enumerate(test_dataloader)):
model.eval()
[clip_img_test] = [item.to(device) for item in data]
##### mask input
clip_img_input_test = clip_img_test.clone()
bs = clip_img_test.shape[0]
mask_marker_n = random.randint(1, 6)
mask_marker_id = torch.rand(bs, mask_marker_n) * 67 # U[0, n_markers), [bs, mask_marker_n]
mask_marker_id = mask_marker_id.long()
mask_row_id1 = mask_marker_id * 3
if args.body_mode in ['local_markers']: # for global traj and pelvis joint
mask_row_id1 = mask_row_id1 + 3 + 3
if args.body_mode in ['local_markers_4chan']: # for pelvis joint
mask_row_id1 = mask_row_id1 + 3
mask_row_id2 = mask_row_id1 + 1
mask_row_id3 = mask_row_id2 + 1
for i in range(bs):
clip_img_input_test[i, 0, mask_row_id1[i], :] = 0.
clip_img_input_test[i, 0, mask_row_id2[i], :] = 0.
clip_img_input_test[i, 0, mask_row_id3[i], :] = 0.
# mask contact lbls/distance if foot marker is masked
if 16 in mask_marker_id[i] or 30 in mask_marker_id[i]:
clip_img_input_test[i, 0, -4, :] = 0.
clip_img_input_test[i, 0, -2, :] = 0.
if 47 in mask_marker_id[i] or 60 in mask_marker_id[i]:
clip_img_input_test[i, 0, -3, :] = 0.
clip_img_input_test[i, 0, -1, :] = 0.
if args.input_padding:
p2d = (8, 8, 1, 1)
clip_img_input_test = F.pad(clip_img_input_test, p2d, 'reflect')
clip_img_test = F.pad(clip_img_test, p2d, 'reflect')
# forward
clip_img_test_rec, z = model(clip_img_input_test)
# reconstruction loss
clip_img_test_v = clip_img_test[:, :, :, 1:] - clip_img_test[:, :, :, 0:-1] # velocity
clip_img_test_rec_v = clip_img_test_rec[:, :, :, 1:] - clip_img_test_rec[:, :, :, 0:-1] # velocity
loss_rec_body_test += F.l1_loss(clip_img_test[:, 0, 0:-5], clip_img_test_rec[:, 0, 0:-5])
loss_rec_body_v_test += F.l1_loss(clip_img_test_v[:, 0, 0:-5], clip_img_test_rec_v[:, 0, 0:-5])
loss_rec_contact_lbl_test += bce_loss(clip_img_test_rec[:, 0, -5:], clip_img_test[:, 0, -5:])
loss_rec_body_test = loss_rec_body_test / test_step
loss_rec_body_v_test = loss_rec_body_v_test / test_step
loss_rec_contact_lbl_test = loss_rec_contact_lbl_test / test_step
####################### log test loss ############################
writer.add_scalar('test/loss_rec_body_test', loss_rec_body_test, total_steps)
print_str = 'Step {:d}/ Epoch {:d}] loss_rec_body_test: {:.10f}'. \
format(step, epoch, loss_rec_body_test)
logger.info(print_str)
print(print_str)
writer.add_scalar('test/loss_rec_body_v_test', loss_rec_body_v_test, total_steps)
print_str = 'Step {:d}/ Epoch {:d}] loss_rec_body_v_test: {:.10f}'. \
format(step, epoch, loss_rec_body_v_test)
logger.info(print_str)
print(print_str)
writer.add_scalar('test/loss_rec_contact_lbl_test', loss_rec_contact_lbl_test, total_steps)
print_str = 'Step {:d}/ Epoch {:d}] loss_rec_contact_lbl_test: {:.10f}'. \
format(step, epoch, loss_rec_contact_lbl_test)
logger.info(print_str)
print(print_str)
if total_steps % args.save_step == 0:
save_path = os.path.join(writer.file_writer.get_logdir(), "AE_last_model.pkl")
torch.save(model.state_dict(), save_path)
logger.info('[*] last model saved\n')
if __name__ == '__main__':
run_id = random.randint(1, 100000)
logdir = os.path.join(args.save_dir, str(run_id)) # create new path
writer = SummaryWriter(log_dir=logdir)
print('RUNDIR: {}'.format(logdir))
sys.stdout.flush()
logger = get_logger(logdir)
logger.info('Let the games begin') # write in log file
save_config(logdir, args)
train(writer, logger)