-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
379 lines (317 loc) · 17.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import numpy as np
import cv2
import ast
import torch
import torch.nn as nn
from smplx.lbs import transform_mat
def row(A):
return A.reshape((1, -1))
def col(A):
return A.reshape((-1, 1))
def unproject_depth_image(depth_image, cam):
us = np.arange(depth_image.size) % depth_image.shape[1] # (w*h,) [0,1,2,...,640, ..., 0,1,2,...,w]
vs = np.arange(depth_image.size) // depth_image.shape[1] # (w*h,) [0,0,...,0, ..., 576,576,...,h]
ds = depth_image.ravel() # (w*h,) return flatten depth_image (still the same memory, not a copy)
uvd = np.array(np.vstack((us.ravel(), vs.ravel(), ds.ravel())).T) # [w*h, 3]
# undistort depth map
xy_undistorted_camspace = cv2.undistortPoints(np.asarray(uvd[:, :2].reshape((1, -1, 2)).copy()),
np.asarray(cam['camera_mtx']), np.asarray(cam['k']))
# unproject to 3d points in depth cam coord
xyz_camera_space = np.hstack((xy_undistorted_camspace.squeeze(), col(uvd[:, 2]))) # [w*h, 3]
xyz_camera_space[:, :2] *= col(xyz_camera_space[:, 2]) # scale x,y by z, --> 3d coordinates in depth camera coordinate
return xyz_camera_space # [w*h, 3]
def points_coord_trans(xyz_source_coord, trans_mtx):
# trans_mtx: sourceCoord_2_targetCoord, same as trans in open3d pcd.transform(trans)
xyz_target_coord = xyz_source_coord.dot(trans_mtx[:3, :3].transpose()) # [N, 3]
xyz_target_coord = xyz_target_coord + row(trans_mtx[:3, 3])
return xyz_target_coord
def projectPoints(v, cam):
v = v.reshape((-1, 3)).copy()
return cv2.projectPoints(v, np.asarray([[0.0,0.0,0.0]]), np.asarray([0.0,0.0,0.0]), np.asarray(cam['camera_mtx']),
np.asarray(cam['k']))[0].squeeze()
def get_valid_idx(points_color_coord, color_cam, TH=1e-2):
# 3D points --> 2D coordinates in color image
uvs = projectPoints(points_color_coord, color_cam) # [n_depth_points, 2]
uvs = np.round(uvs).astype(int)
valid_x = np.logical_and(uvs[:, 1] >= 0, uvs[:, 1] < 1080) # [n_depth_points], true/false
valid_y = np.logical_and(uvs[:, 0] >= 0, uvs[:, 0] < 1920)
valid_idx = np.logical_and(valid_x, valid_y) # [n_depth_points], true/false
valid_idx = np.logical_and(valid_idx, points_color_coord[:, 2] > TH)
uvs = uvs[valid_idx == True] # valid 2d coords in color img of 3d depth points
return valid_idx, uvs
def load_pv_data(csv_path):
# load camera params, RGB frame timestamps of hololens data
with open(csv_path) as f:
lines = f.readlines()
# The first line contains info about the intrinsics.
# The following lines (one per frame) contain timestamp, focal length and transform PVtoWorld
n_frames = len(lines) - 1
frame_timestamps = np.zeros(n_frames, dtype=np.longlong)
focal_lengths = np.zeros((n_frames, 2))
pv2world_transforms = np.zeros((n_frames, 4, 4))
intrinsics_ox, intrinsics_oy, \
intrinsics_width, intrinsics_height = ast.literal_eval(lines[0])
for i_frame, frame in enumerate(lines[1:]):
# Row format is timestamp, focal length (2), transform PVtoWorld (4x4)
frame = frame.split(',')
frame_timestamps[i_frame] = int(frame[0])
focal_lengths[i_frame, 0] = float(frame[1])
focal_lengths[i_frame, 1] = float(frame[2])
pv2world_transforms[i_frame] = np.array(frame[3:20]).astype(float).reshape((4, 4))
return (frame_timestamps, focal_lengths, pv2world_transforms,
intrinsics_ox, intrinsics_oy, intrinsics_width, intrinsics_height)
def load_head_hand_eye_data(csv_path):
joint_count = 26
# load head and eye tracking of hololens data
data = np.loadtxt(csv_path, delimiter=',')
n_frames = len(data)
timestamps = np.zeros(n_frames)
head_transs = np.zeros((n_frames, 3))
left_hand_transs = np.zeros((n_frames, joint_count, 3))
left_hand_transs_available = np.ones(n_frames, dtype=bool)
right_hand_transs = np.zeros((n_frames, joint_count, 3))
right_hand_transs_available = np.ones(n_frames, dtype=bool)
# origin (vector, homog) + direction (vector, homog) + distance (scalar)
gaze_data = np.zeros((n_frames, 9))
gaze_available = np.ones(n_frames, dtype=bool)
for i_frame, frame in enumerate(data):
timestamps[i_frame] = frame[0]
# head
head_transs[i_frame, :] = frame[1:17].reshape((4, 4))[:3, 3]
# left hand
left_hand_transs_available[i_frame] = (frame[17] == 1)
left_start_id = 18
for i_j in range(joint_count):
j_start_id = left_start_id + 16 * i_j
j_trans = frame[j_start_id:j_start_id + 16].reshape((4, 4))[:3, 3]
left_hand_transs[i_frame, i_j, :] = j_trans
# right hand
right_hand_transs_available[i_frame] = (frame[left_start_id + joint_count * 4 * 4] == 1)
right_start_id = left_start_id + joint_count * 4 * 4 + 1
for i_j in range(joint_count):
j_start_id = right_start_id + 16 * i_j
j_trans = frame[j_start_id:j_start_id + 16].reshape((4, 4))[:3, 3]
right_hand_transs[i_frame, i_j, :] = j_trans
# assert(j_start_id + 16 == 851)
gaze_available[i_frame] = (frame[851] == 1)
gaze_data[i_frame, :4] = frame[852:856]
gaze_data[i_frame, 4:8] = frame[856:860]
gaze_data[i_frame, 8] = frame[860]
return (timestamps, head_transs, left_hand_transs, left_hand_transs_available,
right_hand_transs, right_hand_transs_available, gaze_data, gaze_available)
# return (timestamps, head_transs, gaze_data, gaze_available)
def get_eye_gaze_point(gaze_data):
origin_homog = gaze_data[:4]
direction_homog = gaze_data[4:8]
direction_homog = direction_homog / np.linalg.norm(direction_homog)
# if no distance was recorded, set 1m by default
dist = gaze_data[8] if gaze_data[8] > 0.0 else 1.0
point = origin_homog + direction_homog * dist
return point[:3], origin_homog, direction_homog, dist
def match_timestamp(target, all_timestamps):
return np.argmin([abs(x - target) for x in all_timestamps])
def draw_gaze_heatmap_2d(H=1080, W=1920, holo_gaze_point2d_dict=None, holo_frame_id=None):
gaze_heatmap = np.zeros([H, W])
# color: (1080, 1920, 3)
us = np.arange(H * W) % W
vs = np.arange(H * W) // W
gaze_u = int(holo_gaze_point2d_dict[holo_frame_id][0])
gaze_v = int(holo_gaze_point2d_dict[holo_frame_id][1])
gaze_visible = False
if gaze_u < 1920 and gaze_u > 0 and gaze_v < 1080 and gaze_u > 0:
gaze_visible = True
d = (us - gaze_u) ** 2 + (vs - gaze_v) ** 2
d = d ** 0.5
d[d > 150] = 150
# assert np.min(d) == 0
d = d / np.max(d) # in [0,1]
d = 1 - d
gaze_heatmap = d.reshape([H, W])
gaze_heatmap = np.uint8(255 * gaze_heatmap)
gaze_heatmap = cv2.applyColorMap(gaze_heatmap, cv2.COLORMAP_JET)
# turn into red headmap
gaze_heatmap[:, :, -1] = 255
gaze_heatmap[:, :, 0] = 0
gaze_heatmap[:, :, 1] = 0
gaze_heatmap = gaze_heatmap[:, :, ::-1]
gaze_heatmap = cv2.cvtColor(gaze_heatmap, cv2.COLOR_RGB2RGBA)
if gaze_visible:
gaze_heatmap[:, :, -1] = d.reshape([H, W]) * 255 # set alpha by distance from gaze
else:
gaze_heatmap[:, :, -1] = 0
gaze_heatmap[:, :, -1] = gaze_heatmap[:, :, -1] * 0.7 # numpy array
return gaze_heatmap
# cite from https://github.com/mohamedhassanmus/prox/tree/master/prox
# topology transformation between smpl/smpx/smplh and openpose joints
def smpl_to_openpose(model_type='smplx', use_hands=True, use_face=True,
use_face_contour=False, openpose_format='coco25'):
''' Returns the indices of the permutation that maps OpenPose to SMPL
Parameters
----------
model_type: str, optional
The type of SMPL-like model that is used. The default mapping
returned is for the SMPLX model
use_hands: bool, optional
Flag for adding to the returned permutation the mapping for the
hand keypoints. Defaults to True
use_face: bool, optional
Flag for adding to the returned permutation the mapping for the
face keypoints. Defaults to True
use_face_contour: bool, optional
Flag for appending the facial contour keypoints. Defaults to False
openpose_format: bool, optional
The output format of OpenPose. For now only COCO-25 and COCO-19 is
supported. Defaults to 'coco25'
'''
if openpose_format.lower() == 'coco25':
if model_type == 'smpl':
return np.array([24, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5, 8, 1, 4,
7, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
dtype=np.int32)
elif model_type == 'smplh':
body_mapping = np.array([52, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
8, 1, 4, 7, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62], dtype=np.int32)
mapping = [body_mapping]
if use_hands:
lhand_mapping = np.array([20, 34, 35, 36, 63, 22, 23, 24, 64,
25, 26, 27, 65, 31, 32, 33, 66, 28,
29, 30, 67], dtype=np.int32)
rhand_mapping = np.array([21, 49, 50, 51, 68, 37, 38, 39, 69,
40, 41, 42, 70, 46, 47, 48, 71, 43,
44, 45, 72], dtype=np.int32)
mapping += [lhand_mapping, rhand_mapping]
return np.concatenate(mapping)
# SMPLX
elif model_type == 'smplx':
# ex: body_mapping[0]=55: smplx joint 55 = openpose joint 0
body_mapping = np.array([55, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
8, 1, 4, 7, 56, 57, 58, 59, 60, 61, 62,
63, 64, 65], dtype=np.int32) # len of 25
mapping = [body_mapping]
if use_hands:
lhand_mapping = np.array([20, 37, 38, 39, 66, 25, 26, 27,
67, 28, 29, 30, 68, 34, 35, 36, 69,
31, 32, 33, 70], dtype=np.int32) # 21 joints for each hand
rhand_mapping = np.array([21, 52, 53, 54, 71, 40, 41, 42, 72,
43, 44, 45, 73, 49, 50, 51, 74, 46,
47, 48, 75], dtype=np.int32)
mapping += [lhand_mapping, rhand_mapping]
if use_face:
# end_idx = 127 + 17 * use_face_contour
face_mapping = np.arange(76, 127 + 17 * use_face_contour,
dtype=np.int32) # len of 51
mapping += [face_mapping]
return np.concatenate(mapping)
else:
raise ValueError('Unknown model type: {}'.format(model_type))
elif openpose_format == 'coco19':
if model_type == 'smpl':
return np.array([24, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5, 8,
1, 4, 7, 25, 26, 27, 28],
dtype=np.int32)
elif model_type == 'smplh':
body_mapping = np.array([52, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
8, 1, 4, 7, 53, 54, 55, 56],
dtype=np.int32)
mapping = [body_mapping]
if use_hands:
lhand_mapping = np.array([20, 34, 35, 36, 57, 22, 23, 24, 58,
25, 26, 27, 59, 31, 32, 33, 60, 28,
29, 30, 61], dtype=np.int32)
rhand_mapping = np.array([21, 49, 50, 51, 62, 37, 38, 39, 63,
40, 41, 42, 64, 46, 47, 48, 65, 43,
44, 45, 66], dtype=np.int32)
mapping += [lhand_mapping, rhand_mapping]
return np.concatenate(mapping)
# SMPLX
elif model_type == 'smplx':
body_mapping = np.array([55, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
8, 1, 4, 7, 56, 57, 58, 59],
dtype=np.int32)
mapping = [body_mapping]
if use_hands:
lhand_mapping = np.array([20, 37, 38, 39, 60, 25, 26, 27,
61, 28, 29, 30, 62, 34, 35, 36, 63,
31, 32, 33, 64], dtype=np.int32)
rhand_mapping = np.array([21, 52, 53, 54, 65, 40, 41, 42, 66,
43, 44, 45, 67, 49, 50, 51, 68, 46,
47, 48, 69], dtype=np.int32)
mapping += [lhand_mapping, rhand_mapping]
if use_face:
face_mapping = np.arange(70, 70 + 51 +
17 * use_face_contour,
dtype=np.int32)
mapping += [face_mapping]
return np.concatenate(mapping)
else:
raise ValueError('Unknown model type: {}'.format(model_type))
else:
raise ValueError('Unknown joint format: {}'.format(openpose_format))
class JointMapper(nn.Module):
def __init__(self, joint_maps=None):
super(JointMapper, self).__init__()
if joint_maps is None:
self.joint_maps = joint_maps
else:
self.register_buffer('joint_maps',
torch.tensor(joint_maps, dtype=torch.long))
def forward(self, joints, **kwargs):
if self.joint_maps is None:
return joints
else:
return torch.index_select(joints, 1, self.joint_maps)
def create_camera(camera_type='persp', **kwargs):
# if camera_type.lower() == 'persp':
# return PerspectiveCamera(**kwargs)
if camera_type.lower() == 'persp_holo':
return PerspectiveCamera_holo(**kwargs)
else:
raise ValueError('Uknown camera type: {}'.format(camera_type))
class PerspectiveCamera_holo(nn.Module):
FOCAL_LENGTH = 5000
def __init__(self, rotation=None, translation=None,
focal_length_x=None, focal_length_y=None,
batch_size=1,
center=None, dtype=torch.float32, **kwargs):
super(PerspectiveCamera_holo, self).__init__()
self.batch_size = batch_size
self.dtype = dtype
# Make a buffer so that PyTorch does not complain when creating
# the camera matrix
self.register_buffer('zero', torch.zeros([batch_size], dtype=dtype))
self.register_buffer('focal_length_x', focal_length_x) # Adds a persistent buffer to the module
self.register_buffer('focal_length_y', focal_length_y)
if center is None:
center = torch.zeros([batch_size, 2], dtype=dtype)
self.register_buffer('center', center) # [bs, 2]
if rotation is None:
rotation = torch.eye(
3, dtype=dtype).unsqueeze(dim=0).repeat(batch_size, 1, 1) # [bs, 3, 3]
rotation = nn.Parameter(rotation, requires_grad=True)
self.register_parameter('rotation', rotation) # Adds a parameter to the module, shape [1,3,3], [[1,0,0],[0,1,0],[0,0,1]]
if translation is None:
translation = torch.zeros([batch_size, 3], dtype=dtype) # [bs, 3]
translation = nn.Parameter(translation,
requires_grad=True)
self.register_parameter('translation', translation) # all 0
def forward(self, points):
device = points.device # [bs, 118, 3]
with torch.no_grad():
camera_mat = torch.zeros([self.batch_size, 2, 2],
dtype=self.dtype, device=points.device)
camera_mat[:, 0, 0] = self.focal_length_x # todo, self.focal_length_x: [bs]
camera_mat[:, 1, 1] = self.focal_length_y # [bs, 2, 2], each batch: [[f_x, 0], [0, f_y]]
camera_transform = transform_mat(self.rotation,
self.translation.unsqueeze(dim=-1)) # [bs, 4, 4], each batch: I
homog_coord = torch.ones(list(points.shape)[:-1] + [1],
dtype=points.dtype,
device=device) # [bs, 118, 1]
# Convert the points to homogeneous coordinates
points_h = torch.cat([points, homog_coord], dim=-1) # [1, 118, 4]
projected_points = torch.einsum('bki,bji->bjk',
[camera_transform, points_h]) # [1, 118, 4]
img_points = torch.div(projected_points[:, :, :2],
projected_points[:, :, 2].unsqueeze(dim=-1)) # [1, 118, 2]
img_points = torch.einsum('bki,bji->bjk', [camera_mat, img_points]) + self.center.unsqueeze(dim=1)
return img_points # [1, 118, 2]