-
Notifications
You must be signed in to change notification settings - Fork 281
/
Copy pathops.py
350 lines (317 loc) · 14 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
from __future__ import print_function
import tensorflow as tf
from tensorflow.contrib.layers import batch_norm, fully_connected, flatten
from tensorflow.contrib.layers import xavier_initializer
from contextlib import contextmanager
import numpy as np
def gaussian_noise_layer(input_layer, std):
noise = tf.random_normal(shape=input_layer.get_shape().as_list(),
mean=0.0,
stddev=std,
dtype=tf.float32)
return input_layer + noise
def sample_random_walk(batch_size, dim):
rw = np.zeros((batch_size, dim))
rw[:, 0] = np.random.randn(batch_size)
for b in range(batch_size):
for di in range(1, dim):
rw[b, di] = rw[b, di - 1] + np.random.randn(1)
# normalize to m=0 std=1
mean = np.mean(rw, axis=1).reshape((-1, 1))
std = np.std(rw, axis=1).reshape((-1, 1))
rw = (rw - mean) / std
return rw
def scalar_summary(name, x):
try:
summ = tf.summary.scalar(name, x)
except AttributeError:
summ = tf.scalar_summary(name, x)
return summ
def histogram_summary(name, x):
try:
summ = tf.summary.histogram(name, x)
except AttributeError:
summ = tf.histogram_summary(name, x)
return summ
def tensor_summary(name, x):
try:
summ = tf.summary.tensor_summary(name, x)
except AttributeError:
summ = tf.tensor_summary(name, x)
return summ
def audio_summary(name, x, sampling_rate=16e3):
try:
summ = tf.summary.audio(name, x, sampling_rate)
except AttributeError:
summ = tf.audio_summary(name, x, sampling_rate)
return summ
def minmax_normalize(x, x_min, x_max, o_min=-1., o_max=1.):
return (o_max - o_min)/(x_max - x_min) * (x - x_max) + o_max
def minmax_denormalize(x, x_min, x_max, o_min=-1., o_max=1.):
return minmax_normalize(x, o_min, o_max, x_min, x_max)
def downconv(x, output_dim, kwidth=5, pool=2, init=None, uniform=False,
bias_init=None, name='downconv'):
""" Downsampled convolution 1d """
x2d = tf.expand_dims(x, 2)
w_init = init
if w_init is None:
w_init = xavier_initializer(uniform=uniform)
with tf.variable_scope(name):
W = tf.get_variable('W', [kwidth, 1, x.get_shape()[-1], output_dim],
initializer=w_init)
conv = tf.nn.conv2d(x2d, W, strides=[1, pool, 1, 1], padding='SAME')
if bias_init is not None:
b = tf.get_variable('b', [output_dim],
initializer=bias_init)
conv = tf.reshape(tf.nn.bias_add(conv, b), conv.get_shape())
else:
conv = tf.reshape(conv, conv.get_shape())
# reshape back to 1d
conv = tf.reshape(conv, conv.get_shape().as_list()[:2] +
[conv.get_shape().as_list()[-1]])
return conv
# https://github.com/carpedm20/lstm-char-cnn-tensorflow/blob/master/models/ops.py
def highway(input_, size, layer_size=1, bias=-2, f=tf.nn.relu, name='hw'):
"""Highway Network (cf. http://arxiv.org/abs/1505.00387).
t = sigmoid(Wy + b)
z = t * g(Wy + b) + (1 - t) * y
where g is nonlinearity, t is transform gate, and (1 - t) is carry gate.
"""
output = input_
for idx in xrange(layer_size):
lin_scope = '{}_output_lin_{}'.format(name, idx)
output = f(tf.nn.rnn_cell._linear(output, size, 0, scope=lin_scope))
transform_scope = '{}_transform_lin_{}'.format(name, idx)
transform_gate = tf.sigmoid(
tf.nn.rnn_cell._linear(input_, size, 0, scope=transform_scope) + bias)
carry_gate = 1. - transform_gate
output = transform_gate * output + carry_gate * input_
return output
def leakyrelu(x, alpha=0.3, name='lrelu'):
return tf.maximum(x, alpha * x, name=name)
def prelu(x, name='prelu', ref=False):
in_shape = x.get_shape().as_list()
with tf.variable_scope(name):
# make one alpha per feature
alpha = tf.get_variable('alpha', in_shape[-1],
initializer=tf.constant_initializer(0.),
dtype=tf.float32)
pos = tf.nn.relu(x)
neg = alpha * (x - tf.abs(x)) * .5
if ref:
# return ref to alpha vector
return pos + neg, alpha
else:
return pos + neg
def conv1d(x, kwidth=5, num_kernels=1, init=None, uniform=False, bias_init=None,
name='conv1d', padding='SAME'):
input_shape = x.get_shape()
in_channels = input_shape[-1]
assert len(input_shape) >= 3
w_init = init
if w_init is None:
w_init = xavier_initializer(uniform=uniform)
with tf.variable_scope(name):
# filter shape: [kwidth, in_channels, num_kernels]
W = tf.get_variable('W', [kwidth, in_channels, num_kernels],
initializer=w_init
)
conv = tf.nn.conv1d(x, W, stride=1, padding=padding)
if bias_init is not None:
b = tf.get_variable('b', [num_kernels],
initializer=tf.constant_initializer(bias_init))
conv = conv + b
return conv
def time_to_batch(value, dilation, name=None):
with tf.name_scope('time_to_batch'):
shape = tf.shape(value)
pad_elements = dilation - 1 - (shape[1] + dilation - 1) % dilation
padded = tf.pad(value, [[0, 0], [0, pad_elements], [0, 0]])
reshaped = tf.reshape(padded, [-1, dilation, shape[2]])
transposed = tf.transpose(reshaped, perm=[1, 0, 2])
return tf.reshape(transposed, [shape[0] * dilation, -1, shape[2]])
# https://github.com/ibab/tensorflow-wavenet/blob/master/wavenet/ops.py
def batch_to_time(value, dilation, name=None):
with tf.name_scope('batch_to_time'):
shape = tf.shape(value)
prepared = tf.reshape(value, [dilation, -1, shape[2]])
transposed = tf.transpose(prepared, perm=[1, 0, 2])
return tf.reshape(transposed,
[tf.div(shape[0], dilation), -1, shape[2]])
def atrous_conv1d(value, dilation, kwidth=3, num_kernels=1,
name='atrous_conv1d', bias_init=None, stddev=0.02):
input_shape = value.get_shape().as_list()
in_channels = input_shape[-1]
assert len(input_shape) >= 3
with tf.variable_scope(name):
weights_init = tf.truncated_normal_initializer(stddev=0.02)
# filter shape: [kwidth, in_channels, output_channels]
filter_ = tf.get_variable('w', [kwidth, in_channels, num_kernels],
initializer=weights_init,
)
padding = [[0, 0], [(kwidth/2) * dilation, (kwidth/2) * dilation],
[0, 0]]
padded = tf.pad(value, padding, mode='SYMMETRIC')
if dilation > 1:
transformed = time_to_batch(padded, dilation)
conv = tf.nn.conv1d(transformed, filter_, stride=1, padding='SAME')
restored = batch_to_time(conv, dilation)
else:
restored = tf.nn.conv1d(padded, filter_, stride=1, padding='SAME')
# Remove excess elements at the end.
result = tf.slice(restored,
[0, 0, 0],
[-1, input_shape[1], num_kernels])
if bias_init is not None:
b = tf.get_variable('b', [num_kernels],
initializer=tf.constant_initializer(bias_init))
result = tf.add(result, b)
return result
def residual_block(input_, dilation, kwidth, num_kernels=1,
bias_init=None, stddev=0.02, do_skip=True,
name='residual_block'):
print('input shape to residual block: ', input_.get_shape())
with tf.variable_scope(name):
h_a = atrous_conv1d(input_, dilation, kwidth, num_kernels,
bias_init=bias_init, stddev=stddev)
h = tf.tanh(h_a)
# apply gated activation
z_a = atrous_conv1d(input_, dilation, kwidth, num_kernels,
name='conv_gate', bias_init=bias_init,
stddev=stddev)
z = tf.nn.sigmoid(z_a)
print('gate shape: ', z.get_shape())
# element-wise apply the gate
gated_h = tf.mul(z, h)
print('gated h shape: ', gated_h.get_shape())
#make res connection
h_ = conv1d(gated_h, kwidth=1, num_kernels=1,
init=tf.truncated_normal_initializer(stddev=stddev),
name='residual_conv1')
res = h_ + input_
print('residual result: ', res.get_shape())
if do_skip:
#make skip connection
skip = conv1d(gated_h, kwidth=1, num_kernels=1,
init=tf.truncated_normal_initializer(stddev=stddev),
name='skip_conv1')
return res, skip
else:
return res
# Code from keras backend
# https://github.com/fchollet/keras/blob/master/keras/backend/tensorflow_backend.py
def repeat_elements(x, rep, axis):
"""Repeats the elements of a tensor along an axis, like `np.repeat`.
If `x` has shape `(s1, s2, s3)` and `axis` is `1`, the output
will have shape `(s1, s2 * rep, s3)`.
# Arguments
x: Tensor or variable.
rep: Python integer, number of times to repeat.
axis: Axis along which to repeat.
# Raises
ValueError: In case `x.shape[axis]` is undefined.
# Returns
A tensor.
"""
x_shape = x.get_shape().as_list()
if x_shape[axis] is None:
raise ValueError('Axis ' + str(axis) + ' of input tensor '
'should have a defined dimension, but is None. '
'Full tensor shape: ' + str(tuple(x_shape)) + '. '
'Typically you need to pass a fully-defined '
'`input_shape` argument to your first layer.')
# slices along the repeat axis
splits = tf.split(split_dim=axis, num_split=x_shape[axis], value=x)
# repeat each slice the given number of reps
x_rep = [s for s in splits for _ in range(rep)]
return tf.concat(axis, x_rep)
def nn_deconv(x, kwidth=5, dilation=2, init=None, uniform=False,
bias_init=None, name='nn_deconv1d'):
# first compute nearest neighbour interpolated x
interp_x = repeat_elements(x, dilation, 1)
# run a convolution over the interpolated fmap
dec = conv1d(interp_x, kwidth=5, num_kernels=1, init=init, uniform=uniform,
bias_init=bias_init, name=name, padding='SAME')
return dec
def deconv(x, output_shape, kwidth=5, dilation=2, init=None, uniform=False,
bias_init=None, name='deconv1d'):
input_shape = x.get_shape()
in_channels = input_shape[-1]
out_channels = output_shape[-1]
assert len(input_shape) >= 3
# reshape the tensor to use 2d operators
x2d = tf.expand_dims(x, 2)
o2d = output_shape[:2] + [1] + [output_shape[-1]]
w_init = init
if w_init is None:
w_init = xavier_initializer(uniform=uniform)
with tf.variable_scope(name):
# filter shape: [kwidth, output_channels, in_channels]
W = tf.get_variable('W', [kwidth, 1, out_channels, in_channels],
initializer=w_init
)
try:
deconv = tf.nn.conv2d_transpose(x2d, W, output_shape=o2d,
strides=[1, dilation, 1, 1])
except AttributeError:
# support for versions of TF before 0.7.0
# based on https://github.com/carpedm20/DCGAN-tensorflow
deconv = tf.nn.deconv2d(x2d, W, output_shape=o2d,
strides=[1, dilation, 1, 1])
if bias_init is not None:
b = tf.get_variable('b', [out_channels],
initializer=tf.constant_initializer(0.))
deconv = tf.reshape(tf.nn.bias_add(deconv, b), deconv.get_shape())
else:
deconv = tf.reshape(deconv, deconv.get_shape())
# reshape back to 1d
deconv = tf.reshape(deconv, output_shape)
return deconv
def conv2d(input_, output_dim, k_h, k_w, stddev=0.05, name="conv2d", with_w=False):
with tf.variable_scope(name):
w = tf.get_variable('w', [k_h, k_w, input_.get_shape()[-1], output_dim],
initializer=tf.truncated_normal_initializer(stddev=stddev))
conv = tf.nn.conv2d(input_, w, strides=[1, 1, 1, 1], padding='VALID')
if with_w:
return conv, w
else:
return conv
# https://github.com/openai/improved-gan/blob/master/imagenet/ops.py
@contextmanager
def variables_on_gpu0():
old_fn = tf.get_variable
def new_fn(*args, **kwargs):
with tf.device("/gpu:0"):
return old_fn(*args, **kwargs)
tf.get_variable = new_fn
yield
tf.get_variable = old_fn
def average_gradients(tower_grads):
""" Calculate the average gradient for each shared variable across towers.
Note that this function provides a sync point across al towers.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer
list is over individual gradients. The inner list is over the gradient
calculation for each tower.
Returns:
List of pairs of (gradient, variable) where the gradient has been
averaged across all towers.
"""
average_grads = []
for grad_and_vars in zip(*tower_grads):
# each grad is ((grad0_gpu0, var0_gpu0), ..., (grad0_gpuN, var0_gpuN))
grads = []
for g, _ in grad_and_vars:
# Add 0 dim to gradients to represent tower
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension that we will average over below
grads.append(expanded_g)
# Build the tensor and average along tower dimension
grad = tf.concat(0, grads)
grad = tf.reduce_mean(grad, 0)
# The Variables are redundant because they are shared across towers
# just return first tower's pointer to the Variable
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads