-
Notifications
You must be signed in to change notification settings - Fork 281
/
Copy pathmain.py
122 lines (114 loc) · 6.02 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from __future__ import print_function
import tensorflow as tf
import numpy as np
from model import SEGAN, SEAE
import os
from tensorflow.python.client import device_lib
from scipy.io import wavfile
from data_loader import pre_emph
devices = device_lib.list_local_devices()
flags = tf.app.flags
flags.DEFINE_integer("seed",111, "Random seed (Def: 111).")
flags.DEFINE_integer("epoch", 150, "Epochs to train (Def: 150).")
flags.DEFINE_integer("batch_size", 150, "Batch size (Def: 150).")
flags.DEFINE_integer("save_freq", 50, "Batch save freq (Def: 50).")
flags.DEFINE_integer("canvas_size", 2**14, "Canvas size (Def: 2^14).")
flags.DEFINE_integer("denoise_epoch", 5, "Epoch where noise in disc is "
"removed (Def: 5).")
flags.DEFINE_integer("l1_remove_epoch", 150, "Epoch where L1 in G is "
"removed (Def: 150).")
flags.DEFINE_boolean("bias_deconv", False,
"Flag to specify if we bias deconvs (Def: False)")
flags.DEFINE_boolean("bias_downconv", False,
"flag to specify if we bias downconvs (def: false)")
flags.DEFINE_boolean("bias_D_conv", False,
"flag to specify if we bias D_convs (def: false)")
# TODO: noise decay is under check
flags.DEFINE_float("denoise_lbound", 0.01, "Min noise std to be still alive (Def: 0.001)")
flags.DEFINE_float("noise_decay", 0.7, "Decay rate of noise std (Def: 0.7)")
flags.DEFINE_float("d_label_smooth", 0.25, "Smooth factor in D (Def: 0.25)")
flags.DEFINE_float("init_noise_std", 0.5, "Init noise std (Def: 0.5)")
flags.DEFINE_float("init_l1_weight", 100., "Init L1 lambda (Def: 100)")
flags.DEFINE_integer("z_dim", 256, "Dimension of input noise to G (Def: 256).")
flags.DEFINE_integer("z_depth", 256, "Depth of input noise to G (Def: 256).")
flags.DEFINE_string("save_path", "segan_results", "Path to save out model "
"files. (Def: dwavegan_model"
").")
flags.DEFINE_string("g_nl", "leaky", "Type of nonlinearity in G: leaky or prelu. (Def: leaky).")
flags.DEFINE_string("model", "gan", "Type of model to train: gan or ae. (Def: gan).")
flags.DEFINE_string("deconv_type", "deconv", "Type of deconv method: deconv or "
"nn_deconv (Def: deconv).")
flags.DEFINE_string("g_type", "ae", "Type of G to use: ae or dwave. (Def: ae).")
flags.DEFINE_float("g_learning_rate", 0.0002, "G learning_rate (Def: 0.0002)")
flags.DEFINE_float("d_learning_rate", 0.0002, "D learning_rate (Def: 0.0002)")
flags.DEFINE_float("beta_1", 0.5, "Adam beta 1 (Def: 0.5)")
flags.DEFINE_float("preemph", 0.95, "Pre-emph factor (Def: 0.95)")
flags.DEFINE_string("synthesis_path", "dwavegan_samples", "Path to save output"
" generated samples."
" (Def: dwavegan_sam"
"ples).")
flags.DEFINE_string("e2e_dataset", "data/segan.tfrecords", "TFRecords"
" (Def: data/"
"segan.tfrecords.")
flags.DEFINE_string("save_clean_path", "test_clean_results", "Path to save clean utts")
flags.DEFINE_string("test_wav", None, "name of test wav (it won't train)")
flags.DEFINE_string("weights", None, "Weights file")
FLAGS = flags.FLAGS
def pre_emph_test(coeff, canvas_size):
x_ = tf.placeholder(tf.float32, shape=[canvas_size,])
x_preemph = pre_emph(x_, coeff)
return x_, x_preemph
def main(_):
print('Parsed arguments: ', FLAGS.__flags)
# make save path if it is required
if not os.path.exists(FLAGS.save_path):
os.makedirs(FLAGS.save_path)
if not os.path.exists(FLAGS.synthesis_path):
os.makedirs(FLAGS.synthesis_path)
np.random.seed(FLAGS.seed)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement=True
udevices = []
for device in devices:
if len(devices) > 1 and 'cpu' in device.name:
# Use cpu only when we dont have gpus
continue
print('Using device: ', device.name)
udevices.append(device.name)
# execute the session
with tf.Session(config=config) as sess:
if FLAGS.model == 'gan':
print('Creating GAN model')
se_model = SEGAN(sess, FLAGS, udevices)
elif FLAGS.model == 'ae':
print('Creating AE model')
se_model = SEAE(sess, FLAGS, udevices)
else:
raise ValueError('{} model type not understood!'.format(FLAGS.model))
if FLAGS.test_wav is None:
se_model.train(FLAGS, udevices)
else:
if FLAGS.weights is None:
raise ValueError('weights must be specified!')
print('Loading model weights...')
se_model.load(FLAGS.save_path, FLAGS.weights)
fm, wav_data = wavfile.read(FLAGS.test_wav)
wavname = FLAGS.test_wav.split('/')[-1]
if fm != 16000:
raise ValueError('16kHz required! Test file is different')
wave = (2./65535.) * (wav_data.astype(np.float32) - 32767) + 1.
if FLAGS.preemph > 0:
print('preemph test wave with {}'.format(FLAGS.preemph))
x_pholder, preemph_op = pre_emph_test(FLAGS.preemph, wave.shape[0])
wave = sess.run(preemph_op, feed_dict={x_pholder:wave})
print('test wave shape: ', wave.shape)
print('test wave min:{} max:{}'.format(np.min(wave), np.max(wave)))
c_wave = se_model.clean(wave)
print('c wave min:{} max:{}'.format(np.min(c_wave), np.max(c_wave)))
wavfile.write(os.path.join(FLAGS.save_clean_path, wavname), 16e3, c_wave)
print('Done cleaning {} and saved '
'to {}'.format(FLAGS.test_wav,
os.path.join(FLAGS.save_clean_path, wavname)))
if __name__ == '__main__':
tf.app.run()