-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathwhiteboard_image_enhance.py
228 lines (187 loc) · 7.36 KB
/
whiteboard_image_enhance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import argparse
import cv2
import numpy as np
def normalize_kernel(kernel, k_width, k_height, scaling_factor = 1.0):
'''Zero-summing normalize kernel'''
K_EPS = 1.0e-12
# positive and negative sum of kernel values
pos_range, neg_range = 0, 0
for i in range(k_width * k_height):
if abs(kernel[i]) < K_EPS:
kernel[i] = 0.0
if kernel[i] < 0:
neg_range += kernel[i]
else:
pos_range += kernel[i]
# scaling factor for positive and negative range
pos_scale, neg_scale = pos_range, -neg_range
if abs(pos_range) >= K_EPS:
pos_scale = pos_range
else:
pos_sacle = 1.0
if abs(neg_range) >= K_EPS:
neg_scale = 1.0
else:
neg_scale = -neg_range
pos_scale = scaling_factor / pos_scale
neg_scale = scaling_factor / neg_scale
# scale kernel values for zero-summing kernel
for i in range(k_width * k_height):
if (not np.nan == kernel[i]):
kernel[i] *= pos_scale if kernel[i] >= 0 else neg_scale
return kernel
def dog(img, k_size, sigma_1, sigma_2):
'''Difference of Gaussian by subtracting kernel 1 and kernel 2'''
k_width = k_height = k_size
x = y = (k_width - 1) // 2
kernel = np.zeros(k_width * k_height)
# first gaussian kernal
if sigma_1 > 0:
co_1 = 1 / (2 * sigma_1 * sigma_1)
co_2 = 1 / (2 * np.pi * sigma_1 * sigma_1)
i = 0
for v in range(-y, y + 1):
for u in range(-x, x + 1):
kernel[i] = np.exp(-(u*u + v*v) * co_1) * co_2
i += 1
# unity kernel
else:
kernel[x + y * k_width] = 1.0
# subtract second gaussian from kernel
if sigma_2 > 0:
co_1 = 1 / (2 * sigma_2 * sigma_2)
co_2 = 1 / (2 * np.pi * sigma_2 * sigma_2)
i = 0
for v in range(-y, y + 1):
for u in range(-x, x + 1):
kernel[i] -= np.exp(-(u*u + v*v) * co_1) * co_2
i += 1
# unity kernel
else:
kernel[x + y * k_width] -= 1.0
# zero-normalize scling kernel with scaling factor 1.0
norm_kernel = normalize_kernel(kernel, k_width, k_height, scaling_factor = 1.0)
# apply filter with norm_kernel
return cv2.filter2D(img, -1, norm_kernel.reshape(k_width, k_height))
def negate(img):
'''Negative of image'''
return cv2.bitwise_not(img)
def get_black_white_indices(hist, tot_count, black_count, white_count):
'''Blacking and Whiting out indices same as color balance'''
black_ind = 0
white_ind = 255
co = 0
for i in range(len(hist)):
co += hist[i]
if co > black_count:
black_ind = i
break
co = 0
for i in range(len(hist) - 1, -1, -1):
co += hist[i]
if co > (tot_count - white_count):
white_ind = i
break
return [black_ind, white_ind]
def contrast_stretch(img, black_point, white_point):
'''Contrast stretch image with black and white cap'''
tot_count = img.shape[0] * img.shape[1]
black_count = tot_count * black_point / 100
white_count= tot_count * white_point / 100
ch_hists = []
# calculate histogram for each channel
for ch in cv2.split(img):
ch_hists.append(cv2.calcHist([ch], [0], None, [256], (0, 256)).flatten().tolist())
# get black and white percentage indices
black_white_indices = []
for hist in ch_hists:
black_white_indices.append(get_black_white_indices(hist, tot_count, black_count, white_count))
stretch_map = np.zeros((3, 256), dtype = 'uint8')
# stretch histogram
for curr_ch in range(len(black_white_indices)):
black_ind, white_ind = black_white_indices[curr_ch]
for i in range(stretch_map.shape[1]):
if i < black_ind:
stretch_map[curr_ch][i] = 0
else:
if i > white_ind:
stretch_map[curr_ch][i] = 255
else:
if (white_ind - black_ind) > 0:
stretch_map[curr_ch][i] = round((i - black_ind) / (white_ind - black_ind)) * 255
else:
stretch_map[curr_ch][i] = 0
# stretch image
ch_stretch = []
for i, ch in enumerate(cv2.split(img)):
ch_stretch.append(cv2.LUT(ch, stretch_map[i]))
return cv2.merge(ch_stretch)
def fast_gaussian_blur(img, ksize, sigma):
'''Gussian blur using linear separable property of Gaussian distribution'''
kernel_1d = cv2.getGaussianKernel(ksize, sigma)
return cv2.sepFilter2D(img, -1, kernel_1d, kernel_1d)
def gamma(img, gamma_value):
'''Gamma correction of image'''
i_gamma = 1 / gamma_value
lut = np.array([((i / 255) ** i_gamma) * 255 for i in np.arange(0, 256)], dtype = 'uint8')
return cv2.LUT(img, lut)
def color_balance(img, low_per, high_per):
'''Contrast stretch image by histogram equilization with black and white cap'''
tot_pix = img.shape[1] * img.shape[0]
# no.of pixels to black-out and white-out
low_count = tot_pix * low_per / 100
high_count = tot_pix * (100 - high_per) / 100
cs_img = []
# for each channel, apply contrast-stretch
for ch in cv2.split(img):
# cummulative histogram sum of channel
cum_hist_sum = np.cumsum(cv2.calcHist([ch], [0], None, [256], (0, 256)))
# find indices for blacking and whiting out pixels
li, hi = np.searchsorted(cum_hist_sum, (low_count, high_count))
if (li == hi):
cs_img.append(ch)
continue
# lut with min-max normalization for [0-255] bins
lut = np.array([0 if i < li
else (255 if i > hi else round((i - li) / (hi - li) * 255))
for i in np.arange(0, 256)], dtype = 'uint8')
# constrast-stretch channel
cs_ch = cv2.LUT(ch, lut)
cs_img.append(cs_ch)
return cv2.merge(cs_img)
def whiteboard_enhance(img):
'''Enhance Whiteboard image'''
# parameters for enhancing functions
dog_k_size, dog_sigma_1, dog_sigma_2 = 15, 100, 0
cs_black_per, cs_white_per = 2, 99.5
gauss_k_size, gauss_sigma = 3, 1
gamma_value = 1.1
cb_black_per, cb_white_per = 2, 1
# Difference of Gaussian (DoG)
dog_img = dog(img, dog_k_size, dog_sigma_1, dog_sigma_2)
# Negative of image
negative_img = negate(dog_img)
# Contrast Stretch (CS)
contrast_stretch_img = contrast_stretch(negative_img, cs_black_per, cs_white_per)
# Gaussian Blur
blur_img = fast_gaussian_blur(contrast_stretch_img, gauss_k_size, gauss_sigma)
# Gamma Correction
gamma_img = gamma(blur_img, gamma_value)
# Color Balance (CB) (also Contrast Stretch)
color_balanced_img = color_balance(gamma_img, cb_black_per, cb_white_per)
return color_balanced_img
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input', dest = 'input_path',
required = True,
help = 'input image path')
parser.add_argument('-o', '--output', dest = 'output_path',
required = True,
help = 'output image path')
args = parser.parse_args()
# read image
img = cv2.imread(args.input_path)
# apply enhancement
enhanced_img = whiteboard_enhance(img)
# save result image
cv2.imwrite(args.output_path, enhanced_img)