You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository has been archived by the owner on Feb 12, 2022. It is now read-only.
When running !python -u main.py --epochs 500 --nlayers 3 --emsize 200 --nhid 1000 --alpha 0 --beta 0 --dropoute 0 --dropouth 0.25 --dropouti 0.1 --dropout 0.1 --wdrop 0.5 --wdecay 1.2e-6 --bptt 150 --batch_size 128 --optimizer adam --lr 2e-3 --data data/pennchar --save PTBC.pt --when 300 400 I get the following warnings:
-----------------------------------------------------------------------------------------
| end of epoch 28 | time: 317.33s | valid loss 1.01 | valid ppl 2.75 | valid bpc 1.462
-----------------------------------------------------------------------------------------
Saving model (new best validation)
/pytorch/aten/src/ATen/native/cudnn/RNN.cpp:1269: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters().
/pytorch/aten/src/ATen/native/cudnn/RNN.cpp:1269: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters().
.
.
.
-----------------------------------------------------------------------------------------
| end of epoch 29 | time: 3123.33s | valid loss 1.00 | valid ppl 2.75 | valid bpc 1.462
-----------------------------------------------------------------------------------------
Saving model (new best validation)
/pytorch/aten/src/ATen/native/cudnn/RNN.cpp:1269: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters().
/pytorch/aten/src/ATen/native/cudnn/RNN.cpp:1269: UserWarning: RNN module weights are not part of single contiguous chunk of memory. This means they need to be compacted at every call, possibly greatly increasing memory usage. To compact weights again call flatten_parameters().
It looks at work, But fill with UsingWarning. I run it in Google Colaboratory, pytorch1.5. How fix it?Must pytorch0.4?
Thank you!
The text was updated successfully, but these errors were encountered:
Sign up for freeto subscribe to this conversation on GitHub.
Already have an account?
Sign in.
Hi,
When running
!python -u main.py --epochs 500 --nlayers 3 --emsize 200 --nhid 1000 --alpha 0 --beta 0 --dropoute 0 --dropouth 0.25 --dropouti 0.1 --dropout 0.1 --wdrop 0.5 --wdecay 1.2e-6 --bptt 150 --batch_size 128 --optimizer adam --lr 2e-3 --data data/pennchar --save PTBC.pt --when 300 400
I get the following warnings:It looks at work, But fill with UsingWarning. I run it in Google Colaboratory, pytorch1.5. How fix it?Must pytorch0.4?
Thank you!
The text was updated successfully, but these errors were encountered: