Skip to content

Latest commit

 

History

History
152 lines (124 loc) · 9.21 KB

README.md

File metadata and controls

152 lines (124 loc) · 9.21 KB

HierarPy [in progress]

Tools for calculating dominance hiearchies in Python. Working on including:

Usage:

First, import packages:

import pandas as pd
import hierarpy as hp

Load an example dataframe (provided in hierarpy/test_dfs)

df = pd.read_csv('test_dfs/df1.csv')

This dataframe looks like the following:

datetime winner loser sex_winner sex_loser
0 2016-09-08 12:19:41 A G m m
1 2016-09-08 12:24:35 A C m m
2 2016-09-08 14:43:32 B C m m
3 2016-09-08 15:26:44 C B m m
4 2016-09-08 17:08:47 C R m m

Processing interactions into a matrix:

We can tabulate this dataframe using hierarpy's matrix_from_dataframe function:

mat = hp.matrix_from_dataframe(df, Winner = 'winner', Loser = 'loser')

Resulting in the following matrix of interactions:

winner A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A 0 2 11 1 1 0 6 0 0 0 1 2 0 0 5 2 1 0 0 1 0 0 0 0 0 0
B 0 0 2 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0
C 2 3 0 1 0 0 3 0 0 1 1 0 1 1 0 2 0 1 1 3 3 0 1 1 1 0
D 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
E 0 0 2 0 0 0 0 0 1 0 2 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
F 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
G 0 1 3 1 0 2 0 0 0 0 0 0 0 1 3 0 0 0 2 0 1 1 1 0 6 1
H 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
I 1 1 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 2 1 0 0 0 0 1 0
J 0 0 2 0 0 1 0 0 0 0 1 0 0 6 0 0 0 0 0 0 0 0 0 0 1 0
K 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 1 1 0 0 0 0 1 1 0
L 0 0 2 0 0 0 2 0 0 0 0 0 0 3 5 0 0 1 0 0 0 0 0 0 0 0
M 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0
N 7 4 5 2 0 3 5 0 3 1 3 2 1 1 6 3 0 1 1 1 0 3 1 0 0 2
O 0 0 2 2 0 0 0 0 1 0 1 0 0 2 0 1 0 2 0 3 0 0 0 0 1 0
P 0 0 0 0 0 0 1 0 0 0 0 1 0 1 2 0 0 1 0 0 0 0 0 0 0 0
Q 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
R 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0
U 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 0
V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0
X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Getting David's ranks and scores

We can get David's ranks and scores from such a matrix using the function david_ranks:

david = hp.david_ranks(mat)

And david will now be a dataframe with scores and ranks for each individual:

ind D_score Davids_rank
1 N 67.5 1
2 A 53.2454 2
3 Q 35.3929 3
4 J 29.9515 4
5 H 28.3057 5
6 E 25.1667 6
7 L 24.0262 7
8 G 16.0595 8
9 I 15.789 9
10 B 13.2095 10
11 M 3.96337 11
12 C 0.341026 12
13 V -4.79048 13
14 P -5.50714 14
15 O -7.44048 15
16 F -8.7 16
17 K -12.2667 17
18 Z -15.3738 18
19 U -16.8295 19
20 X -17.2462 20
21 W -24.22 21
22 D -28.4405 22
23 T -28.6071 23
24 S -39.87 24
25 R -50.1866 25
26 Y -53.4723 26

Getting ADAGIO graph and ranks

We can get the ADAGIO graph's nodes and edges from a matrix using the function run_ADAGIO. This function can take the arguments preprocess_data (Boolean, see paper for details), and plot (Also Boolean, whether or not to plot the resulting graph).

nodes, edges = hp.run_ADAGIO(mat, preprocess_data = False ,plot=True)

This results in the following plot:

ADAGIO graph

From these nodes and edges, we can convert to rankings using the function rank_from_graph. We can use the argument method to choose "bottom-up" or "top-down" rankings (see paper for details):

ind adagio_rank
12 M 1
23 X 1
22 W 1
4 E 1
16 Q 1
7 H 1
8 I 1
9 J 1
11 L 1
13 N 2
21 V 3
15 P 3
0 A 3
10 K 3
6 G 4
2 C 4
14 O 5
5 F 5
20 U 5
1 B 5
25 Z 5
17 R 6
19 T 6
3 D 6
18 S 7
24 Y 7

More to come :)