-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrain.py
283 lines (221 loc) · 8.92 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# import packages
import argparse
import pickle
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
from src.LoadDataBPE import LoadDataBPE
from src.LoadDataSimple import LoadDataSimple
from src.LoadDataBase import PytorchCustomLoader
from src.TransformerModelAuto import AutomaticTransformer
from src.TransformerModelManual import ManualTransformer
from sacrebleu.metrics import BLEU
def calculate_BLEU(
targets: list,
predictions: list,
int2target: dict
) -> float:
# targets, predictions are lists of tensors (for every pair of target - pred outputs)
target_symbols, prediction_symbols = [], []
for i , (target, prediction) in enumerate(zip(targets, predictions)):
target_in_symbol = ' '.join([int2target[i.item()] for i in target[:-1]])
target_symbols += [target_in_symbol]
prediction_in_symbol = ' '.join([int2target[i.item()] for i in prediction[:-1]])
prediction_symbols += [prediction_in_symbol]
bleu = BLEU().corpus_score(hypotheses=prediction_symbols, references=[target_symbols])
return bleu.score
def test(
test_loader: data.DataLoader,
model: nn.Module,
device: torch.device,
int2target: dict
) -> float:
targets, predictions = [], []
for source, target in test_loader:
source, tagret = source.to(device), target.to(device)
_, prediction = model(source, target)
target = target.reshape(-1)
prediction = prediction.reshape(-1)
predictions += [prediction]
targets += [target]
return calculate_BLEU(targets, predictions, int2target=int2target)
def evaluate(
dev_loader: data.DataLoader,
model: nn.Module,
criterion: nn.CrossEntropyLoss,
device: torch.device,
int2target: dict
) -> tuple:
loss_set = total = 0
targets, predictions = [], []
for source, target in dev_loader:
source, target = source.to(device), target.to(device)
output, prediction = model(source, target)
target = target.reshape(-1)
output = output.reshape(-1, output.shape[2])
prediction = prediction.reshape(-1)
targets += [target]
predictions += [prediction]
loss = criterion(output, target)
loss_set += loss.item()
total += source.shape[0]
bleu_set = calculate_BLEU(targets, predictions, int2target=int2target)
return loss_set/total, bleu_set
def train(
train_loader: data.DataLoader,
dev_loader: data.DataLoader,
learning_rate: float,
max_iter: int,
model: nn.Module,
int2target: dict,
device: torch.device,
checkpoint_path: str
) -> tuple:
# set optimizer and loss
opt = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()
# set history
train_loss, train_bleu, dev_loss, dev_bleu = [], [], [], []
model.train()
# best bleu
best_bleu = 0
print("starts training...")
for i in range(max_iter):
epoch_loss = total = 0
targets, predictions = [], []
for j, (source, target) in enumerate(train_loader):
source, target = source.to(device), target.to(device)
opt.zero_grad()
# output: (batch_size, trg_len, trg_vocab), prediction: (batch_size, trg_len)
output, prediction = model(source, target)
target = target.reshape(-1)
output = output.reshape(-1, output.shape[2])
prediction = prediction.reshape(-1)
targets += [target]
predictions += [prediction]
loss = criterion(output, target)
loss.backward()
opt.step()
epoch_loss += loss.item()
total += source.shape[0]
# calculate BLEU on examples
bleu_epoch = calculate_BLEU(targets, predictions, int2target=int2target)
# evaluate on development
loss_dev, bleu_dev = evaluate(dev_loader, model=model, device=device, criterion=criterion, int2target=int2target)
# update history
train_bleu += [bleu_epoch]
train_loss += [epoch_loss/total]
dev_loss += [loss_dev]
dev_bleu += [bleu_dev]
print("eopch: {}, train loss: {}, dev loss: {}, train BLEU: {}, dev BLEU: {}".format(
i, epoch_loss/total, loss_dev, bleu_epoch, bleu_dev
))
# break? save model
if bleu_dev > best_bleu:
best_bleu = bleu_dev
checkpoint_dict = {'model': model.state_dict(), 'criterion': criterion.state_dict()}
torch.save(checkpoint_dict, checkpoint_path)
return (train_loss, train_bleu, dev_loss, dev_bleu)
def main():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('-s', '--SourcePath', required=True, type=str, help='path to source file')
parser.add_argument('-t', '--TargetPath', required=True, type=str, help='path to target file')
parser.add_argument('-d', '--Debug', default=0, type=int)
parser.add_argument('-a', '--AutomaticModel', default=1, type=int)
parser.add_argument('-b', '--BPE', default=1, type=int)
args = parser.parse_args()
# hyper-parameters
max_iter = 3
lr = 0.001
dropout = 0.0
batch_size = 1
max_vocab = 10 #1000
embedding_dim = 256
num_heads = 2 #8
n_encoder_blocks = 2 #4
n_decoder_blocks = 2 #4
feed_forward_size = 32
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
symbol_kwargs = {
'SOS': '<SOS>',
'EOS': '<EOS>',
'UNK': '<UNK>',
'PAD': '<PAD>',
'EOW': '</w>',
'EOC': '</c>'
}
# choose simple or BPE tokenizer
if args.BPE:
source_loader = LoadDataBPE(file_path=args.SourcePath, debug=args.Debug)
target_loader = LoadDataBPE(file_path=args.TargetPath, debug=args.Debug)
else:
source_loader = LoadDataSimple(file_path=args.SourcePath, debug=args.Debug)
target_loader = LoadDataSimple(file_path=args.TargetPath, debug=args.Debug)
# load source sentences
sources = source_loader.readFile()
s2i, i2s = source_loader.createVocab(max_vocab=max_vocab, **symbol_kwargs)
sources = source_loader.tokenize(w2i=s2i, sentences=sources, eow=symbol_kwargs['EOW']).getTokenizedSentences()
max_src_len = source_loader.getMaxSentenceLength()
# load target sentences
targets = target_loader.readFile()
t2i, i2t = target_loader.createVocab(max_vocab=max_vocab, **symbol_kwargs)
targets = target_loader.tokenize(w2i=t2i, sentences=targets, eow=symbol_kwargs['EOW']).getTokenizedSentences()
max_trg_len = target_loader.getMaxSentenceLength()
# split to sets
assert len(targets) == len(sources)
num_examples = len(targets)
size_train = int(num_examples*.85)
train_targets, train_sources = targets[:size_train], sources[:size_train]
dev_targets, dev_sources = targets[size_train:], sources[size_train:]
# load to pytorch tensors
train_loader = PytorchCustomLoader(
sources=train_sources, targets=train_targets, bpe_tokenizer=bool(args.BPE), sources2int=s2i, targets2int=t2i, **symbol_kwargs
)
train_loader = data.DataLoader(dataset=train_loader, batch_size=batch_size, shuffle=True)
dev_loader = PytorchCustomLoader(
sources=dev_sources, targets=dev_targets, bpe_tokenizer=bool(args.BPE), sources2int=s2i, targets2int=t2i, **symbol_kwargs
)
dev_loader = data.DataLoader(dataset=dev_loader, batch_size=batch_size, shuffle=True)
# initialize model
model_kwargs = {
'embedding_dim': embedding_dim,
'num_heads': num_heads,
'N_encoder_blocks': n_encoder_blocks,
'N_decoder_blocks': n_decoder_blocks,
'ff_dim': feed_forward_size,
'device': device,
'dropout': dropout,
'src_vocab_size': len(s2i),
'src_max_size': max_src_len,
'trg_vocab_size': len(t2i),
'trg_max_size': max_trg_len
}
if args.AutomaticModel:
model = AutomaticTransformer(**model_kwargs)
else:
model = ManualTransformer(**model_kwargs)
# save kwargs used (for loading)
checkpoint_path = os.path.join(os.getcwd(), 'checkpoints')
if not os.path.isdir(checkpoint_path):
os.mkdir(checkpoint_path)
with open(os.path.join(checkpoint_path, 'model_kwargs'), 'wb+') as f:
pickle.dump(model_kwargs, f)
environment_kwargs = {"batch_size": batch_size, "s2i": s2i, "i2s": i2s, "t2i": t2i, "i2t":i2t}
environment_kwargs.update(symbol_kwargs)
with open(os.path.join(checkpoint_path, 'env_kwargs'), 'wb+') as f:
pickle.dump(environment_kwargs, f)
# train model
history = train(
train_loader=train_loader,
dev_loader=dev_loader,
learning_rate=lr,
device=device,
model=model,
max_iter=max_iter,
int2target=i2t,
checkpoint_path=os.path.join(checkpoint_path, 'checkpoint')
)
if __name__ == "__main__":
main()