-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathrun.py
338 lines (279 loc) · 11.6 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
"""Contains a main function for training and/or evaluating a model."""
import os
import sys
import numpy as np
import random
from parse_args import interpret_args
import data_util
from data_util import atis_data
from model.schema_interaction_model import SchemaInteractionATISModel
from logger import Logger
from model.model import ATISModel
from model_util import Metrics, evaluate_utterance_sample, evaluate_interaction_sample, \
train_epoch_with_utterances, train_epoch_with_interactions, evaluate_using_predicted_queries
import torch
np.random.seed(0)
random.seed(0)
VALID_EVAL_METRICS = [Metrics.LOSS, Metrics.TOKEN_ACCURACY, Metrics.STRING_ACCURACY]
TRAIN_EVAL_METRICS = [Metrics.LOSS, Metrics.TOKEN_ACCURACY, Metrics.STRING_ACCURACY]
FINAL_EVAL_METRICS = [Metrics.STRING_ACCURACY, Metrics.TOKEN_ACCURACY]
def train(model, data, params):
""" Trains a model.
Inputs:
model (ATISModel): The model to train.
data (ATISData): The data that is used to train.
params (namespace): Training parameters.
"""
# Get the training batches.
log = Logger(os.path.join(params.logdir, params.logfile), "w")
num_train_original = atis_data.num_utterances(data.train_data)
log.put("Original number of training utterances:\t"
+ str(num_train_original))
eval_fn = evaluate_utterance_sample
trainbatch_fn = data.get_utterance_batches
trainsample_fn = data.get_random_utterances
validsample_fn = data.get_all_utterances
batch_size = params.batch_size
if params.interaction_level:
batch_size = 1
eval_fn = evaluate_interaction_sample
trainbatch_fn = data.get_interaction_batches
trainsample_fn = data.get_random_interactions
validsample_fn = data.get_all_interactions
maximum_output_length = params.train_maximum_sql_length
train_batches = trainbatch_fn(batch_size,
max_output_length=maximum_output_length,
randomize=not params.deterministic)
if params.num_train >= 0:
train_batches = train_batches[:params.num_train]
training_sample = trainsample_fn(params.train_evaluation_size,
max_output_length=maximum_output_length)
valid_examples = validsample_fn(data.valid_data,
max_output_length=maximum_output_length)
num_train_examples = sum([len(batch) for batch in train_batches])
num_steps_per_epoch = len(train_batches)
log.put(
"Actual number of used training examples:\t" +
str(num_train_examples))
log.put("(Shortened by output limit of " +
str(maximum_output_length) +
")")
log.put("Number of steps per epoch:\t" + str(num_steps_per_epoch))
log.put("Batch size:\t" + str(batch_size))
print(
"Kept " +
str(num_train_examples) +
"/" +
str(num_train_original) +
" examples")
print(
"Batch size of " +
str(batch_size) +
" gives " +
str(num_steps_per_epoch) +
" steps per epoch")
# Keeping track of things during training.
epochs = 0
patience = params.initial_patience
learning_rate_coefficient = 1.
previous_epoch_loss = float('inf')
maximum_validation_accuracy = 0.
maximum_string_accuracy = 0.
countdown = int(patience)
if params.scheduler:
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(model.trainer, mode='min', )
keep_training = True
while keep_training:
log.put("Epoch:\t" + str(epochs))
model.set_dropout(params.dropout_amount)
if not params.scheduler:
model.set_learning_rate(learning_rate_coefficient * params.initial_learning_rate)
# Run a training step.
if params.interaction_level:
epoch_loss = train_epoch_with_interactions(
train_batches,
params,
model,
randomize=not params.deterministic)
else:
epoch_loss = train_epoch_with_utterances(
train_batches,
model,
randomize=not params.deterministic)
log.put("train epoch loss:\t" + str(epoch_loss))
model.set_dropout(0.)
# Run an evaluation step on a sample of the training data.
train_eval_results = eval_fn(training_sample,
model,
params.train_maximum_sql_length,
name=os.path.join(params.logdir, "train-eval"),
write_results=True,
gold_forcing=True,
metrics=TRAIN_EVAL_METRICS)[0]
for name, value in train_eval_results.items():
log.put(
"train final gold-passing " +
name.name +
":\t" +
"%.2f" %
value)
# Run an evaluation step on the validation set.
valid_eval_results = eval_fn(valid_examples,
model,
params.eval_maximum_sql_length,
name=os.path.join(params.logdir, "valid-eval"),
write_results=True,
gold_forcing=True,
metrics=VALID_EVAL_METRICS)[0]
for name, value in valid_eval_results.items():
log.put("valid gold-passing " + name.name + ":\t" + "%.2f" % value)
valid_loss = valid_eval_results[Metrics.LOSS]
valid_token_accuracy = valid_eval_results[Metrics.TOKEN_ACCURACY]
string_accuracy = valid_eval_results[Metrics.STRING_ACCURACY]
if params.scheduler:
scheduler.step(valid_loss)
if valid_loss > previous_epoch_loss:
learning_rate_coefficient *= params.learning_rate_ratio
log.put(
"learning rate coefficient:\t" +
str(learning_rate_coefficient))
previous_epoch_loss = valid_loss
saved = False
if not saved and string_accuracy > maximum_string_accuracy:
maximum_string_accuracy = string_accuracy
patience = patience * params.patience_ratio
countdown = int(patience)
last_save_file = os.path.join(params.logdir, "save_" + str(epochs))
model.save(last_save_file)
log.put(
"maximum string accuracy:\t" +
str(maximum_string_accuracy))
log.put("patience:\t" + str(patience))
log.put("save file:\t" + str(last_save_file))
if countdown <= 0:
keep_training = False
countdown -= 1
log.put("countdown:\t" + str(countdown))
log.put("")
epochs += 1
log.put("Finished training!")
log.close()
return last_save_file
def evaluate(model, data, params, last_save_file, split):
"""Evaluates a pretrained model on a dataset.
Inputs:
model (ATISModel): Model class.
data (ATISData): All of the data.
params (namespace): Parameters for the model.
last_save_file (str): Location where the model save file is.
"""
if last_save_file:
model.load(last_save_file)
else:
if not params.save_file:
raise ValueError(
"Must provide a save file name if not training first.")
model.load(params.save_file)
filename = split
if filename == 'dev':
split = data.dev_data
elif filename == 'train':
split = data.train_data
elif filename == 'test':
split = data.test_data
elif filename == 'valid':
split = data.valid_data
else:
raise ValueError("Split not recognized: " + str(params.evaluate_split))
if params.use_predicted_queries:
filename += "_use_predicted_queries"
else:
filename += "_use_gold_queries"
full_name = os.path.join(params.logdir, filename) + params.results_note
if params.interaction_level or params.use_predicted_queries:
examples = data.get_all_interactions(split)
if params.interaction_level:
evaluate_interaction_sample(
examples,
model,
name=full_name,
metrics=FINAL_EVAL_METRICS,
total_num=atis_data.num_utterances(split),
database_username=params.database_username,
database_password=params.database_password,
database_timeout=params.database_timeout,
use_predicted_queries=params.use_predicted_queries,
max_generation_length=params.eval_maximum_sql_length,
write_results=True,
use_gpu=True,
compute_metrics=params.compute_metrics)
else:
evaluate_using_predicted_queries(
examples,
model,
name=full_name,
metrics=FINAL_EVAL_METRICS,
total_num=atis_data.num_utterances(split),
database_username=params.database_username,
database_password=params.database_password,
database_timeout=params.database_timeout)
else:
examples = data.get_all_utterances(split)
evaluate_utterance_sample(
examples,
model,
name=full_name,
gold_forcing=False,
metrics=FINAL_EVAL_METRICS,
total_num=atis_data.num_utterances(split),
max_generation_length=params.eval_maximum_sql_length,
database_username=params.database_username,
database_password=params.database_password,
database_timeout=params.database_timeout,
write_results=True)
def main():
"""Main function that trains and/or evaluates a model."""
params = interpret_args()
# Prepare the dataset into the proper form.
data = atis_data.ATISDataset(params)
# Construct the model object.
if params.interaction_level:
model_type = SchemaInteractionATISModel
else:
print('not implemented')
exit()
model = model_type(
params,
data.input_vocabulary,
data.output_vocabulary,
data.output_vocabulary_schema,
data.anonymizer if params.anonymize and params.anonymization_scoring else None)
model = model.cuda()
print('=====================Model Parameters=====================')
for name, param in model.named_parameters():
print(name, param.requires_grad, param.is_cuda, param.size())
assert param.is_cuda
model.build_optim()
print('=====================Parameters in Optimizer==============')
for param_group in model.trainer.param_groups:
print(param_group.keys())
for param in param_group['params']:
print(param.size())
if params.fine_tune_bert:
print('=====================Parameters in BERT Optimizer==============')
for param_group in model.bert_trainer.param_groups:
print(param_group.keys())
for param in param_group['params']:
print(param.size())
sys.stdout.flush()
last_save_file = ""
if params.train:
last_save_file = train(model, data, params)
if params.evaluate and 'valid' in params.evaluate_split:
evaluate(model, data, params, last_save_file, split='valid')
if params.evaluate and 'dev' in params.evaluate_split:
evaluate(model, data, params, last_save_file, split='dev')
if params.evaluate and 'test' in params.evaluate_split:
evaluate(model, data, params, last_save_file, split='test')
if __name__ == "__main__":
main()